Лагранжа метод

Метод Лагранжа — метод дифференциального исчисления, применяемый при наличии ограничивающих условий. Этот метод позволяет перейти от оптимизационной задачи с ограничениями к альтернативной оптимизационной задаче без ограничений, у которых совпадают решения. Фактически математическая задача на условный экстремум заменяется задачей на безусловный экстремум, но с увеличением числа неизвестных.  [c.119]


При разработанных нормах потребности в оборудовании (на создание-парка) для последних лет плановых пятилетних периодов нормы по годам планового периода устанавливают методом интерполяции с помощью полинома Лагранжа (в общем случае) или формулы первой средней разности (если численные значения норм изменяются по прямой).  [c.169]

Метод множителей Лагранжа состоит в получении условий оптимальности в несколько измененной, но эквивалентной форме.  [c.46]

В последние несколько десятилетий основные идеи метода множителей Лагранжа удалось перенести и на задачи с ограничениями типа неравенств, которые, как мы увидим в дальнейшем, более естественны для экономико-математических моделей. Сформулируем необходимое условие максимума функции U(x), где х е= Еп, при наличии ограничений  [c.48]

Используем метод множителей Лагранжа для решения чрезвычайно простой линейной задачи оптимизации  [c.49]

Как видно, описанный здесь метод решения, основанный на полном переборе вершин, является значительно более простым л эффективным, нежели непосредственное использование метода множителей Лагранжа. В то же время не следует считать, что решение задач линейного программирования является простым делом, состоящим просто в полном переборе вершин множества допустимых значений переменных. Для того чтобы понять это, достаточно заметить, что вершина множества допустимых точек (в том случае, когда это множество имеет внутренние точки) в задаче (4.22) — (4.24) связана с обращением в равенства п ограничений из их совокупности (4.23), (4.24). Таким образом, вообще говоря, число вершин множества (4.23), (4.24) может равняться числу различных сочетаний по п ограничений из общего числа т + п. Число различных сочетания  [c.51]

Можно доказать и более общее утверждение о свойствах двойственных переменных. При описании метода множителей Лагранжа для задач с ограничениями типа равенств мы показали, что множитель Лагранжа равен производной критерия по правой части равенства. Этим же свойством множители Лагранжа обладают и в задачах линейного программирования  [c.56]

Если и(у) >0 только при у > 0, то для решения задачи у имеем у > 0 и модель можно проанализировать при помощи описанного в 4 гл. 1 метода неопределенных множителей Лагранжа. Выпишем функцию Лагранжа для задачи (6.9)  [c.119]

Для решения задачи (1.2) — (1.4), т. е. выбора такого варианта распределения ресурса Xi (i = 1,. . ., п) и соответствующих плановых заданий yt (i = 1,. . ., д), связанных с xi соотношением (1.2), можно использовать метод множителей Лагранжа, описанный в 4 гл. 1. Функция Лагранжа имеет вид  [c.339]


Интегральный метод дает наиболее общий подход к решению задач факторного анализа по разложению общего прироста показателя по факторным приращениям. В основе интегрального метода лежит интеграл Эйлера — Лагранжа, устанавливающий связь между приращением функции и приращением факторных признаков. Для функции z = (x, у) имеем следующие формулы расчета факторных влияний.  [c.275]

Очевидно, что такая задача может быть решена методами условного экстремума. В этом случае строится функция Лагранжа  [c.199]

Тем самым приходим к задаче нелинейного программирования с линейными ограничениями (4.2), (4.3) и вогнутой целевой функцией. Воспользуемся методом Лагранжа, причем так, как это было сделано в [58]. Построим функцию  [c.104]

Воспользуемся методом множителей Лагранжа. Функция Лагранжа в данном случае имеет вид  [c.128]

В связи с применением критерия (5.51) отметим следующее. На этом этапе при определении корреляционных связей чаще всего применяют метод наименьших квадратов. Однако необходимо напомнить, что метод наименьших квадратов не гарантирует неотрицательности искомых значений, а критерий (5.51) гарантирует. В работе [58] вывод об этом сделан только после проведения соответствующих выкладок с применением лагранжиана. В данном случае необходимости в этом нет. Дело здесь в том, что квадратическая функция определена на всей области R", а логарифмическая - только на R"+, т. е. только при положительных значениях переменных. Поэтому в первом случае следует ожидать оптимального решения любого знака и к ограничениям типа (5.52) добавлять ограничения на неотрицательность искомых значений переменных, а во втором в этом необходимости нет. Следовательно, критерий (5.51) надо признать технологически оправданным, тем более, что основное требование для функций, применяемых для этих целей, - обладание острым экстремумом — выполняется.  [c.168]

Нашей целью является поиск значений X (причем их сумма равна единице), которые дают наименьшее значение V для определенного значения Е. Максимизировать (или минимизировать) функцию Н(Х, Y) при наличии условия или ограничения G(X, Y) можно с помощью метода Лагранжа. Для этого зададим функцию Лагранжа F(X, Y, L)  [c.187]

Лагранжа или метод конечных приращений - предлагает оригинальный,  [c.55]

Рассмотрим применение метода Лагранжа к основным типам моделей  [c.59]

Применяя метод Лагранжа, основанный на теореме о промежуточном  [c.88]

Далее, по имеющимся данным, в соответствии с методом Лагранжа,  [c.122]

Применяя метод множителей Лагранжа, получим  [c.106]

ЛАГРАНЖА МЕТОД [Lagrangian method] — метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (j , X ) функции Лагранжа, что достигается приравниванием нулю частных производных этой функции по а, и Хг См, Лагранжиан.  [c.166]

Мукштадт [180] предложил решать исходную задачу (11.3.1) с помощью двух аппроксимаций для запасов в депо и множителя Лагранжа. Метод опирается на тот факт, что число дефицитов в каждом пункте в практически интересных ситуациях хорошо приближается экспоненциальной функцией максимального запаса Sjj.  [c.342]

Метод множителей Лагранжа. Рассмотрим слеиующую задачу Найти максимум U(xt, х2), где Xi и х2 — скалярные переменные, при условии g(xi, х2) = b.  [c.46]

Для построения двойственной задачи обратимся к методу множителей Лагранжа, который хотя и не эффективен при решении задач линейного программирования, но полезен для их качественного анализа. Функция Лаграижа для задачи (4.22) — (4.24) имеет вид  [c.53]


Способ решения задачи зависит от вида функции /. При линейной функции методом решения будет линейное программирование, при нелинейной фиункции — возможно привлечение метода множителей Лагранжа либо динамического программирования.  [c.105]

Применяя метод Ж. Лагранжа (Lagrange) (1736—1813) к выражению (11.3.1), получим так называемые условия первого порядка  [c.228]

Так как Y = -L, то Y = 10 и X = 10. Максимальное произведение 10 10= 100. Метод множителей Лагранжа был продемонстрирован для двух переменных и одной 01раничительной функции. Метод можно также применять, когда есть более чем две переменные и более чем одна ограничительная функция. Далее для примера следует форма для поиска экстремума, когда есть три переменные и две ограничительные функции  [c.187]

Таким образом, мы можем утверждать, что эффективные границы портфелей с неограниченной суммой весов содержат одинаковые портфели с разным уровнем заемных средств (с разным плечом). Портфель, в котором меняется величина плеча для получения заданного уровня прибыли Е, когда снято ограничение суммы весов, будет иметь второй множитель Лагранжа, равный нулю, при сумме весов, равной 1. Теперь мы можем достаточно просто определить, каким будет наш неограниченный геометрический оптимальный портфель. Сначала найдем портфель, который имеет нулевое значение для второго множителя Лагранжа, когда сумма весов ограничена 1,00. Одним из способов поиска такого портфеля является процесс итераций. Получившийся в результате портфель поднимается (или опускается) рычагом в зависимости от выбранного Е для неограниченного портфеля. Значение Е, удовлетворяющее любому уравнению с (7.Оба) по (7.06г), и будет тем значением, которое соответствует неограниченному геометрическому оптимальному портфелю. Для выбора геометрического оптимального портфеля на эффективной границе AHPR для портфелей с неограниченными весами, можно использовать первый множитель Лагранжа, который определяет положение портфеля на эффективной границе. Вспомните (см. главу 6), что одним из побочных продуктов при определении состава портфеля методом элементарных построчных преобразований является первый множитель Лагранжа. Он выражает мгновенную скорость изменения дисперсии по отношению к ожидаемой прибыли (с обратным знаком). Первый множитель Лагранжа, равный - 2, означает, что в этой точке дисперсия изменяется по отношению к ожидаемой прибыли со скоростью 2. В результате, мы получим портфель, который геометрически оптимален. (7.06д) L1 = - 2,  [c.218]

Экономико-математический словарь Изд.5 (2003) -- [ c.166 , c.167 , c.202 ]

Словарь современной экономической теории макмиллана (2003) -- [ c.0 ]