ПОИСК
Это наилучшее средство для поиска информации на сайте
Потенциальные течения
из "Вариационные принципы механики сплошной среды "
В формуле (6.31) подынтегральное количество в объемном интеграле отличается знаком от давления. [c.220]Рассмотрим частный случай, когда идеальная несжимаемая жидкость движется над плоскостью Ю (см. обозначения, введенные при формулировке вариационного принципа для функционала (5.56)). Вариационный принцип для функционала (6.33) перейдет в принцип Люка. [c.221]
Первое ограничение (6.35) можно отбросить, если считать, что множитель Лагранжа для этого ограничения включен в потенциал внешних массовых сил (или после некоторого переопределения р — в потенциал р). [c.221]
Приведем теперь формулировки вариационных принципов для потенциальных течений жидкости, не содержащей свободных поверхностей. [c.221]
Теорема. Минимизирующий элемент функционала кинетической энергии единствен. [c.221]
Доказательство существования минимизирующего элемента несколько сложнее и может быть проведено по схеме, изложенной в 1 гл. II. [c.221]
Вернуться к основной статье