ПОИСК
Это наилучшее средство для поиска информации на сайте
Упражнения и задачи
из "Вводный курс эконометрики "
В этом случае оценки коэффициентов, полученные при прямом применении МНК, являются смещенными и несостоятельными. [c.289]Во всех этих преобразованиях текущее значение yt переменной Y выражается только через ее предыдущие значения и случайную составляющую (белый шум) ut. [c.291]
Конечной целью статистического анализа временных рядов является прогнозирование будущих значений исследуемого показателя. Такое прогнозирование позволяет, во-первых, предвидеть будущие экономические реалии, во-вторых, проанализировать построенную регрессионную модель на устойчивость (т.е. ее применимость в изменяющихся условиях). Прогнозирование можно осуществлять либо на основе выявленных закономерностей изменения самого исследуемого показателя во времени и экстраполяции его прошлого поведения на будущее либо на основе выявленной зависимости исследуемого показателя от других экономических факторов, будущие значения которых контролируемы, известны или легко предсказуемы. [c.293]
Кстати, некоторые авторы различают такие понятия, как прогнозирование и предсказание. [c.293]
В этом случае, если будущее значение xt+p известно, то такое оценивание Y называется предсказанием. Если же действительное значение xt+p неизвестно, то говорят, что делается прогноз значения Y. Очевидно, точность прогноза ниже точности предсказания, так как в этом случае точное значение xt+p неизвестно. [c.293]
Кроме того, различают долгосрочное и краткосрочное прогнозирование. В первом анализируется долговременная динамика анализируемого показателя, и в этом случае главным представляется выделение общего направления его изменения - тренда. При этом считается возможным пренебречь краткосрочными колебаниями значений исследуемого показателя относительно этого тренда. Тренд обычно строится методами регрессионного анализа. [c.293]
При анализе динамических моделей обычно на базе статистических методов пытаются определить вероятную ошибку предсказаний. Схема проводимых расчетов достаточно подробно расписана в параграфе 5.5. [c.294]
Из формулы (12.47) видно, что чем больше отклоняется прогнозируемое значение случайной величины X от выборочного среднего, тем больше дисперсия ошибки предсказания. С другой стороны, дисперсия ошибки тем меньше, чем больше объем выборки п. [c.294]
В развернутом виде это соотношение представлено в (5.35). [c.295]
Общая схема соотношения между значением объясняющей переменной X и доверительным интервалом для предсказания значения Y наглядно представлена на рис. 5.4. [c.295]
При достаточно большом прогнозном периоде можно воспользоваться схемой проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений, описанной в разделе 6.6.2. При этом рассчитываются три уравнения регрессии для периода выборки, для периода прогноза и для объединенного периода. [c.296]
При осуществлении прогноза будущих значений зависимой переменной в первую очередь необходимо спрогнозировать будущие значения объясняющих переменных. Такая комплексная задача весьма нетривиальна, что делает практически невозможным использование при анализе формальных тестов на стабильность. В данном случае при оценке качества прогноза могут быть использованы такие относительно простые и популярные показатели, как относительная ошибка прогноза и стандартная среднеквадратическая ошибка. [c.297]
Вернуться к основной статье