ПОИСК
Это наилучшее средство для поиска информации на сайте
Мультиколлинеарность
из "Математические методы в экономике Издание 2 "
Теперь мы предпримем для иллюстрации шаг, который впоследствии окажется ошибочным, но поможет при этом показать очень важное явление в оценивании множественной регрессии - мульти-коллинеарность. Мультиколлинеарность - это коррелированность двух или нескольких объясняющих переменных в уравнении регрессии. Проблема мультиколлинеарности возникает только для случая множественной регрессии, поскольку в парной регрессии лишь одна объясняющая переменная. Оценка коэффициента регрессии может оказаться незначимой не только из-за несущественности данного фактора, но и из-за того, что трудно разграничить воздействие на зависимую переменную двух или нескольких факторов. Это бывает в том случае, когда какие-то факторы линейно связаны между собой (коррелированы) и меняются синхронно. Связь зависимой переменной с изменениями каждого из них можно определить, только если в число объясняющих переменных включается лишь один из этих факторов. [c.347]В общем случае, если при оценке уравнения регрессии несколько факторов оказались незначимыми, то нужно выяснить, нет ли среди них сильно коррелированных между собой. Для этого распечатывается корреляционная матрица (это предусмотрено стандартными статистическими программными пакетами), и проверяется статистическая значимость коэффициентов парной корреляции. При наличии корреляции один из пары связанных между собой факторов исключается, либо в качестве объясняющего фактора берется какая-то их функция. Если же незначимым оказался только один фактор, то можно его исключить или заменить другим (хотя, возможно, на каком-то более коротком промежутке времени данный фактор оказался бы значимым). [c.348]
Вернуться к основной статье