ПОИСК
Это наилучшее средство для поиска информации на сайте
Методические рекомендации
из "Учебное пособие по решению задач по курсу экономико-математические методы и модели "
Для удобства вычислений используют вспомогательную таблицу (табл. 9.1), в которой рассчитываются необходимые суммы. [c.116]Некоторая фирма занимается поставками различных грузов на короткие расстояния внутри города. Перед менеджером стоит задача оценить стоимость таких услуг, зависящую от затрачиваемого на поставку времени. В качестве наиболее важного фактора, влияющего на время поставки, менеджер выбрал пройденное расстояние. Были собраны исходные данные о десяти поставках (табл. 9.2). [c.116]
Постройте график исходных данных, определите по нему характер зависимости между расстоянием и затраченным временем, проанализируйте применимость метода наименьших квадратов, постройте уравнение регрессии, проанализируйте силу регрессионной связи и сделайте прогноз времени поездки на 2 мили. [c.116]
На рис. 9.4 построены исходные данные по десяти поездкам. [c.117]
Помимо расстояния на время поставки влияют пробки на дорогах, время суток, дорожные работы, погода, квалификация водителя, вид транспорта. Построенные точки не находятся точно на линии, что обусловлено описанными выше факторами. Но эти точки собраны вокруг прямой линии, поэтому можно предположить линейную связь между параметрами. Все исходные точки равномерно распределены вдоль предполагаемой прямой линии, что позволяет применить метод наименьших квадратов. [c.117]
Вычислим суммы, необходимые для расчета коэффициентов линейной регрессии, коэффициента детерминации с помощью табл. 9.3. [c.117]
Таким образом, линейная модель объясняет 91,8% вариации времени доставки. Не объясняется 100%-91,8% = 8,2% вариации времени поездки, которые обусловлены остальными факторами, влияющими на время поставки, но не включенными в линейную модель регрессии. [c.119]
При прогнозах на расстояния, не входящие в диапазон исходных данных, нельзя гарантировать справедливость модели (9.4). Это объясняется тем, что связь между временем и расстоянием может изменяться по мере увеличения расстояния. На время дальних перевозок могут влиять новые факторы такие, как использование скоростных шоссе, остановки на отдых, обед и т.п. [c.119]
Приблизительным, но самым простым и наглядным способом проверки удовлетворительности регрессионной модели является графическое представление отклонений (рис. 9.5). [c.119]
Рассмотрим наиболее простые случаи нелинейной регрессии гиперболу, экспоненту и параболу. При нахождении коэффициентов гиперболы и экспоненты используют прием приведения нелинейной регрессионной зависимости к линейному виду. Это позволяет использовать для вычисления коэффициентов функций регрессии формулы (9.3). [c.120]
При проведении вычислений во вспомогательную таблицу вносятся соответствующие колонки. [c.120]
Вернуться к основной статье