ПОИСК
Это наилучшее средство для поиска информации на сайте
Как потерпеть неудачу при оптимизации
из "Энциклопедия торговых стратегий "
Чем будет вызвана неудача В большинстве случаев система будет работать великолепно при тестировании, но плохо при реальной торговле. Специалисты по разработке нейронных сетей называют это слабой генерализацией трейдеры знакомы с этим явлением по частым опустошениям денежного счета у брокера. Одно из последствий такого неудачного исхода — распространенное заблуждение о вреде оптимизации вообще. [c.60]На самом же деле оптимизаторы не опасны, и не каждой оптимизации следует бояться. Опасна только неправильная оптимизация — как это бывает при попытках оптимизировать множество параметров на маленькой выборке данных, без проведения тестов за пределами выборки или статистического подтверждения — просто плохая практика, по ряду причин приводящая к разорительным результатам. [c.60]
Рассмотрим влияние на оптимизацию мелких выборок. Небольшие выборки рыночных данных вряд ли будут представительными для того рынка, который призваны охарактеризовать следовательно, они будут заметно отличаться от других выборок данного рынка. Оптимизатор, запущенный с маленькой выборкой данных, верой и правдой будет искать лучшее решение и найдет его. Но лучшее решение для пробного образца может оказаться разрушительным для реальной торговли. Неудача произойдет не потому, что оптимизация получила неверное решение, а потому, что она получила решение некорректно поставленной задачи. [c.60]
Эти формулы справедливы только для линейной регрессии. Тем не менее их можно использовать для оценки качества генерализации, проводимой полностью обученной нейронной сетью (т.е. частным случаем нелинейной регрессии). При работе с нейронными сетями Сбудет означать общее количество весов связей в модели. Кроме того, убедитесь, что этими формулами используются простые корреляции если нейронная сеть или регрессионная программа возвращает квадраты корреляций, следует извлечь квадратный корень. [c.61]
Излишне большой набор свободных параметров или правил влияет на попытку оптимизации также, как и недостаточное количество точек данных. Когда количество элементов, подвергающихся оптимизации, повышается, пропорционально растет способность модели подгонять их под любые неоднородности тестовой выборки, а следовательно, увеличивается вклад артефактов в эффективность модели. Результат оптимизации большого количества параметров или правил будет хорошо работать на тестовых данных, но плохо на данных вне выборки и в реальной торговле. [c.61]
Один из лучших способов попасть в беду — не проверить результаты при помощи тестов на данных, взятых вне оптимизационной выборки. Без такого подтверждения ошибочные решения, вызванные недостаточной выборкой или избытком параметров, не говоря уж о менее ясных причинах, будут не замечены вовремя. Торговая система, дающая на некотором образце данных высокие результаты, будет применена к реальной торговле, и в результате вы понесете тяжелые убытки. Трейдер, разрабатывающий системы без проверки на данных вне выборки, похож на пилота, управляющего неизвестной ему моделью самолета с завязанными глазами. [c.62]
Вернуться к основной статье