ПОИСК
Это наилучшее средство для поиска информации на сайте
Применение нейронных сетей в задачах прогнозирования и проблемы идентификации моделей прогнозирования на нейронных сетях
из "Методы прогнозирования в условиях рынка "
Жесткие статистические предположения о свойствах временных рядов ограничивают возможности классических методов прогнозирования. В данной ситуации адекватным аппаратом для решения задач прогнозирования могут служить специальные искусственные нейронные сети (НС) [22, 116]. [c.166]В этой связи возникает особо важная задача определения структуры и типа прогнозирующей нейронной сети. На сегодняшний день нет алгоритма или метода, позволяющего дать однозначный ответ на этот вопрос. Однако предложены способы настройки числа нейронов в процессе обучения, которые обеспечивают построение нейронной сети для решения задачи и дают возможность избежать избыточности. Эти способы настройки можно разделить на две группы конструктивные алгоритмы и алгоритмы сокращения. [c.166]
В основе алгоритмов сокращения лежит принцип постепенного удаления из нейронной сети синапсов и нейронов. В начале работы алгоритма обучения с сокращением число нейронов скрытых слоях сети заведомо избыточно. [c.166]
В конструктивных алгоритмах число нейронов в скрытых слоях также изначально мало и постепенно увеличивается. В отличие от описанной методики, в конструктивных алгоритмах сохраняются навыки, приобретенные сетью до увеличения числа нейронов. [c.167]
Самым большим недостатком алгоритма является экспоненциальный рост времени вычислений при увеличении размерности сети. Для преодоления указанного недостатка предлагается упрощенный алгоритм расщепления, который не требует значительных вычислений. [c.168]
Кроме описанных способов выбора нейронов для расщепления, может быть использован анализ чувствительности, в процессе которого строятся матрицы Гессе - матрицы вторых производных функции ошибки по параметрам сети. По величине модуля второй производной судят о важности значения данного параметра для решения задачи. Параметры с малыми значениями вторых производных обнуляют. Анализ чувствительности имеет большую вычислительную сложность и требует много дополнительной памяти. [c.168]
Вернуться к основной статье