ПОИСК
Это наилучшее средство для поиска информации на сайте
Сравнительный анализ нейронных сетей
из "Методы прогнозирования в условиях рынка "
Актуальность данной тематики продиктована поиском адекватных моделей нейронных сетей (НС), определяемые типом и структурой НС, для задач прогнозирования. В ходе исследования установлено, что радиальные базисные сети (RBF) обладают рядом преимуществ перед сетями типа многослойных персептрон (MLP) [121, 123]. Во-первых, они моделируют произвольную нелинейную функцию с помощью одного промежуточного слоя. Тем самым отпадает вопрос о числе слоев. Во-вторых, параметры линейной комбинации в выходном слое можно полностью оптимизировать с помощью известных методов моделирования, которые не испытывают трудностей с локальными минимумами, мешающими при обучении MLP. Поэтому сеть RBF обучается очень быстро (на порядок быстрее MLP) [85,107]. [c.168]С другой стороны, до того как применять линейную оптимизацию в выходном слое сети RBF, необходимо определить число радиальных элементов, положение их центров и величины отклонений. Для устранения этой проблемы предлагается использовать автоматизированный конструктор сети, который выполняет за пользователя основные эксперименты с сетью. [c.168]
С групповым подходом связано и неумение сетей RBF экстраполировать свои выводы за область известных данных. При удалении от обучающего множества значение функции отклика быстро спадает до нуля. Напротив, сеть MLP выдает более определенные решения при обработке сильно отклоняющихся данных, однако, в целом, склонность MLP к некритическому экстраполированию результата считается его слабостью. Сети RBF более чувствительны к проклятию размерности и испытывают значительные трудности, когда число входов велико. [c.169]
На рисунке 4.44 показана динамика курса акций российской компании ОАО РАО ЕЭС . [c.169]
Рисунок 4.44. Динамика курса акций российской компании ОАО РАО ЕЭС в период с 29.05.1997 по 24.06.2003 гг. [c.170]
Рисунок 4.47. Динамика курса акций Сбербанка (1304 наблюдений) в период с 29.05.1997 по 24.06.2003 гг. [c.171]
В четвертом столбце таблиц показан внешний вид НС. В пятом столбце указаны дополнительные характеристики НС, такие как регрессионное отношение, корреляция, среднеквадратическая ошибка предсказания НС. [c.172]
Можно сделать следующие выводы. Каждый из двух описанных подходов имеет свои достоинства и недостатки. Действие радиальных функций очень локально, в то время как при линейном подходе охватывается все пространство входов. Поэтому, как правило, RBF-сети имеют больше элементов, чем MLP-сети, однако MLP может делать необоснованные обобщения в ситуациях, когда ему попадается набор данных, непохожий ни на какие наборы из обучающего множества, в то время как RBF в таком случае всегда будет выдавать почти нулевой отклик [91, 92]. [c.173]
Вернуться к основной статье