ПОИСК
Это наилучшее средство для поиска информации на сайте
Основные этапы и проблемы эконометрического моделирования
из "Эконометрика "
Можно выделить шесть основных этапов эконометрического моделирования постановочный, априорный, этап параметризации, информационный, этапы идентификации и верификации модели [1]. [c.21]Остановимся подробнее на каждом из этих этапов и рассмотрим проблемы, связанные с их реализацией. [c.21]
В качестве цели эконометрического моделирования обычно рассматривают анализ исследуемого экономического объекта (процесса) прогноз его экономических показателей, имитацию развития объекта при различных значениях экзогенных переменных (отражая их случайный характер, изменение во времени), выработку управленческих решений. [c.21]
Забегая вперед, отметим, что для отбора переменных могут быть использованы различные методы, в частности процедуры пошагового отбора переменных ( 5.2). А для оценки влияния качественных признаков (например, пол, образование и т. п.) могут быть использованы фиктивные переменные ( 5.3). Но в любом случае определяющим при включении в модель тех или иных переменных является экономический (качественный) анализ исследуемого объекта. [c.21]
Основная задача, решаемая на этом этапе, — выбор вида функции f(X) в эконометрической модели (1.1), в частности, возможность использования линейной модели как наиболее простой и надежной (о некоторых вопросах линеаризации модели см. 5.5). Весьма важной проблемой на этом (и предыдущих) этапе эконометрического моделирования является проблема спецификации модели (см. гл. 10), в частности выражение в математической форме обнаруженных связей и соотношений установление состава экзогенных и эндогенных переменных, в том числе лаговых формулировка исходных предпосылок и ограничений модели. От того, насколько удачно решена проблема спецификации модели, в значительной степени зависит успех всего эконометрического моделирования. [c.22]
Здесь могут быть наблюдения, полученные как с участием исследователя, так и без его участия (в условиях активного или пассивного эксперимента). [c.22]
С проблемой идентификации модели не следует путать проблему ее идентифицируемости (гл. 9), т. е. проблему возможности получения однозначно определенных параметров модели, заданной системой одновременных уравнений (точнее, параметров структурной формы модели, раскрывающей механизм формирования значений эндогенных переменных, по параметрам приведенной формы модели, в которой эндогенные переменные непосредственно выражаются через предопределенные переменные). [c.22]
Следует заметить, что если имеются статистические данные, характеризующие моделируемый экономический объект в данный и предшествующие моменты времени, то для верификации модели, построенной для прогноза, достаточно сравнить реальные значения переменных в последующие моменты времени с соответствующими их значениями, полученными на основе рассматриваемой модели по данным предшествующих моментов. [c.23]
Приведенное выше разделение эконометрического моделирования на отдельные этапы носит в известной степени условный характер, так как эти этапы могут пересекаться, взаимно дополнять друг друга и т. п. [c.23]
Прежде чем изучать основные разделы эконометрики — классическую и обобщенную модели регрессии, временные ряды и системы одновременных уравнений (гл. 3—10), рассмотрим в следующей главе (гл. 2) основные понятия теории вероятностей и математической статистики, составляющие основу математического инструментария эконометрики. Подготовленный соответствующим образом читатель может сразу перейти к изучению гл. 3. [c.23]
Вернуться к основной статье