ПОИСК
Это наилучшее средство для поиска информации на сайте
Организация обслуживания вычислительных задач
из "Автоматизированные информационные технологии в экономике "
На рис. 3.2 изображена схема организации многомашинной вычислительной системы, где упорядочение очереди из потока заданий осуществляется диспетчером Д1, а ее обслуживание ЭВМ - через диспетчера Д2. [c.70]Такая система может быть охарактеризована как система с дискретными состояниями и непрерывным временем. Под дискретными состояниями понимается то, что в любой момент времени система может находиться только в одном состоянии, а число состояний ограничено (может быть пронумеровано). Говоря о непрерывном времени, подразумевают, что границы переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и переход может произойти в принципе в любой момент времени. [c.70]
Случайный процесс, протекающий в системе, называется марковским (по фамилии русского математика), если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние. Реально марковские случайные процессы в чистом виде в системах не протекают. Тем не менее реальный случайный процесс можно свести при определенных условиях к марковскому. А в этом случае для описания системы можно построить довольно простую математическую модель. [c.72]
Третье предположение позволяет не ограничивать длину очереди (скажем, не более десяти заявок), хотя и содержит в себе требования конечности, т. е. можно посчитать число заявок в очереди. [c.72]
Обозначим состояние рассматриваемой вычислительной системы. [c.72]
Учитывая, что увеличение числа заявок (заданий) в системе (т.е. номера состояния) происходит под воздействием их потока с интенсивностью /, а уменьшение - под воздействием потока обслуживания с интенсивностью г, изобразим размеченный граф состояний нашей системы (рис. 3.3). [c.72]
При исследовании такой вероятностной системы важно знать значение вероятностей состояний, с помощью которых можно вычислить показатели эффективности, такие, как количество заданий в системе, время ожидания обработки, пропускная способность и т.д. Как известно, значение вероятности лежит в пределах от 0 до 1. Так как мы рассматриваем дискретную систему, то в любой момент времени она может находиться только в одном из состояний и, следовательно, сумма вероятностей состояний всегда равна 1, т.е. [c.73]
Для того чтобы определить значение P,(t), приведенной формулы недостаточно/Кроме нее составляется еще система дифференциальных уравнений Колмогорова, решение которой и дает искомые значения P t). Чаще всего реальные вычислительные системы быстро достигают установившегося режима, и тогда вероятности состояний перестают зависеть от времени и практически показывают, какую долю достаточно длинного промежутка времени система будет находиться в том или ином состоянии. Например, если система имеет три возможных состояния Р,=0,2, Р2=0,6, / 3=0,1, то это означает, что в состоянии 5, система в среднем находится 20 % времени, в S2 -60 %, а в S3 -10 % времени. Такие не зависимые от времени вероятности называют финальными. [c.74]
Вот тут и могут появиться задания, ожидающие обработки вечно. [c.76]
Как видно, полученная математическая модель довольно проста и позволяет легко рассчитать показатели эффективности вычислительной системы. Очевидно, что для уменьшения времени пребывания задания в системе, а значит, и в очереди требуется при заданной интенсивности потока заявок либо увеличивать число обслуживающих ЭВМ, либо уменьшать время обслуживания каждой ЭВМ, либо и то, и другое вместе. [c.76]
Как указывалось, организация очереди, поддержание ее структуры возлагаются на диспетчера Д1, а передача заданий из очереди на обработку в вычислительные машины, поддержание дисциплины обслуживания в очереди (поддержка системы приоритетов) осуществляются диспетчером Д2 (см. рис. 3.2). В вычислительной системе диспетчеры реализуются в виде управляющих программ, входящих в состав операционных систем ЭВМ. [c.77]
Вернуться к основной статье