ПОИСК
Это наилучшее средство для поиска информации на сайте
Как найти свою кривую полезности
из "Новый подход к управлению капиталом "
Для начала следует задаться двумя предельными величинами, одной положительной, другой отрицательной, которые должны играть роль экстремальных исходов торговли. Обычно в качестве таких величин следует выбирать 3-5-кратный максимальный выигрыш или проигрыш, которые вам привычно ожидать от следующей сделки. [c.119]Давайте предположим, что в лучшем случае вы рассчитываете выиграть 5000 долл. или проиграть 3000 долл. Следовательно, за верхний экстремум можно принять 20000 долл., а за нижний - минус 10000 долл. [c.119]
Объясним смысл термина цена уверенности. Он обозначает ту плату, на которую мы наверняка согласились бы вместо возможности проведения сделки, или цену, которую мы бы сами заплатили, чтобы избежать проведения сделки. [c.120]
Теперь нужно заполнить третий столбец ценами уверенности. Значение в первой строке, куда мы занесли 20000 долларов, означает просто, что мы бы лучше сразу приняли 20000 долларов наличными, нежели совершить сделку со 100% вероятностью выиграть 20000 долларов. Аналогичным образом -10000 долларов, занесенные в последнюю строку, означают просто, что вы готовы сразу заплатить 10000 долларов, чтобы уйти от сделки со 100% шансами проиграть 10000 долларов. [c.120]
Таким же образом нужно заполнить и остальные ячейки этого столбца таблицы. Например, заполняя предпоследнюю ячейку, нужно задаться вопросом, сколько вы готовы заплатить, чтобы отказаться от 10 шансов (10%) выиграть 20000 долл. против 90 шансов (90%) проиграть 10000 долл. Поскольку заплатить придется вам, эту цену уверенности нужно писать со знаком минус. [c.121]
расположив расчетную полезность по оси у, а цену уверенности по оси х, вычертите соответствующий график. В результате ваша функция полезности будет выглядеть так, как это показано на рис. 2.5. [c.123]
Большое значение имеет форма кривой, которую нужно рассматривать с позиций предыдущего раздела Свойства функций предпочтения полезности). Довольно часто эта форма оказывается не такой идеальной, как приводимые в учебниках вогнутые вверх, вогнутые вниз или прямолинейные разновидности. Это вновь как-то характеризует вас и заслуживает тщательного изучения. [c.124]
Вернуться к основной статье