ПОИСК
Это наилучшее средство для поиска информации на сайте
Математическая оптимизация
из "Новый подход к управлению капиталом "
Математическая оптимизация представляет собой задачу отыскания максимального или минимального значения некоторой целевой функции по заданному параметру (s). Целевая функция есть, таким образом, нечто такое, что может быть оптимизировано только с помощью итеративной процедуры. [c.172]Например, отыскание оптимального/для одной рыночной системы или одного сценарного спектра является задачей математической оптимизации. В этих случаях методы математической оптимизации могут быть достаточно грубыми, вроде перебора всех значений / от 0 до 1,0 с шагом 0,01. В качестве целевой функции для отыскания среднего геометрического HPR при различных условиях и заданном значении/может выступать одна из функций, представленных в главе 1. Роль варьируемого параметра здесь играет то значение / которое тестируется в интервале от 0 до 1. [c.172]
Теперь, когда у нас есть координаты для отдельной точки (ее широта, долгота и высота), нам нужна некая процедура поиска, метод математической оптимизации, для изменения значений / подставляемых в целевую функцию таким образом, чтобы возможно скорее и проще добраться до вершины поверхности. [c.173]
что мы делаем, направлено на составление карты определенной области в (и + 1)-мерного изображения, ибо координаты его вершины дают нам оптимальные значения /для использования в каждой рыночной системе. [c.173]
В прошлом было разработано множество методов математической оптимизации, многие из которых весьма продуманны и эффективны. У нас есть из чего выбирать. Ключевым вопросом является К какой целевой функции мы будем применять эти методы математической оптимизации в нашей новой методологии инвестирования капитала Целевая функция является ее сердцевиной. Далее мы обсудим этот вопрос и проиллюстрируем на примерах, как работать с целевыми функциями. После этого мы займемся методами оптимизации целевых функций. [c.173]
Вернуться к основной статье