ПОИСК
Это наилучшее средство для поиска информации на сайте
Методы современного факторного анализа
из "Финансовый анализ - методы и процедуры "
В эту группу входят методы анализа многофакторных зависимостей в условиях, когда факторы существенно коррелируют между собой. Дело в том, что практическое применение классических регрессионных моделей в экономическом анализе сопряжено с необходимостью преодоления ряда трудностей, основная из которых — мультиколлинеарность факторов. Особенность экономического анализа заключается в тесной взаимосвязи и взаимообусловленности показателей, поэтому бездумное и необоснованное включение в регрессионную модель бессистемно отобранных показателей нередко приводит к искусственности модели, невозможности ее использования на практике. Если пытаться следовать формальным требованиям регрессионного анализа в полном объеме, то, например, устранение мультиколлинеарности нередко сводится к отбрасыванию существенно коррелирующих факторов. В этом случае, во-первых, имеет место потеря информации и, во-вторых, анализ чаще всего выхолащивается, в некотором роде теряет смысл, поскольку модель сводится к одно- или двухфакторной. [c.128]Предположим для примера, что анализируется влияние различных факторов на изменение производительности труда. Среди этих факторов — показатели, связанные с техническим обеспечением производственной деятельности, технологическим уровнем производства, уровнем организации производства, уровнем квалификационной и общеобразовательной подготовки работников и т.п. Все факторы влияют на изменение производительности труда, но вместе с тем они, без сомнения, не являются независимыми друг от друга. В рамках классического корреляционно-регрессионного анализа методом пошаговой регрессии можно отбросить коррелирующие и незначимые факторы, однако не исключено, что модель существенно упростится, причем значимые (по логике) направления (например, факторы, связанные с технологией производства) могут вообще быть не представлены в модели. [c.128]
Особенность современного факторного анализа заключается в том, что он дает возможность совместной обработки большого числа взаимосвязанных (коррелирующих) факторов. Аппарат современного факторного анализа позволяет свести десятки исходных признаков (факторов) к нескольким обобщенным, которые не наблюдаются непосредственно при исследовании, но, тем не менее, появляются в модели как линейные комбинации исходных признаков и поддаются определенной интерпретации. Важная особенность подобных обобщенных факторов состоит в том, что они не коррелируют между собой и потому их удобно использовать для построения уравнения регрессии. [c.129]
В зависимости от того, какие исходные признаки входят в обобщенные факторы, последние можно интерпретировать как обобщенные характеристики сложных факторов, каждый из которых, с одной стороны, имманентно присущ изучаемому явлению или процессу, а, с другой стороны, с позиции количественной оценки не сводится к какому-то одному экономически понятному показателю. В качестве примера подобных обобщенных факторов можно привести размер предприятия, его технический уровень, уровень организации труда и т.п. Очевидно, что каждое из приведенных понятий чрезвычайно емко в содержательном плане и вряд ли может быть охарактеризовано каким-то конкретным, очевидным показателем. Например, можно ли отдать предпочтение какому-то одному показателю (величина основных средств, уставный капитал, число работников, объем производимой продукции и т.п.) как характеристике величины предприятия Ответ вряд ли будет утвердительным. [c.129]
Основными недостатками описанных методов являются существенная сложность математического аппарата, необходимость использования для расчетов специализированных пакетов, сложность интерпретации обобщенных факторов и др. Поэтому методы применяются лишь в тематическом анализе. Подробную характеристику и опыт приложения данных методов можно найти в эконометрической литературе и соответствующих узкоспециализированных монографиях. [c.130]
Вернуться к основной статье