Известно большое число экономических, технических и военных задач, постановки которых укладываются в схему (1.1) —, (1.3). Запись (1.1) — i(1.3), вполне определенная при детерминированных значениях параметров условий задачи, теряет определенность и требует дополнительных разъяснений при случайных значениях параметров исходной информации. Между тем во многих прикладных задачах коэффициенты целевой функции, элементы матрицы условий или составляющие вектора ограничений — случайные величины. Естественный, на первый взгляд, путь анализа стохастических задач — замена случайных параметров их средними значениями и вычисление оптимальных планов полученных таким образом детерминированных задач — не всегда оправдан. При усреднении параметров условий задачи может быть нарушена адекватность модели изучаемому явлению. Решение детерминированной задачи с усредненными параметрами может не удовлетворять условиям задачи при различных реализациях элементов матрицы условий и вектора ограничений.