ПОИСК
Это наилучшее средство для поиска информации на сайте
Модель Вальраса
из "50 лекций по микроэкономике Том 2 "
Первым, кто взялся за построение модели общего равновесия, был французский экономист Леон Вальрас. [c.220]Модель является попыткой представить все уравнения, описывающие общее равновесие в хозяйстве, чтобы сравнить число этих уравнений с числом переменных, которые они включают. Если число уравнений будет равно числу переменных, то общее равновесие возможно. [c.220]
В хозяйстве существует т видов потребительских благ, каждое из которых производится в условиях совершенной конкуренции множеством независимых фирм. Каждая фирма максимизирует свою прибыль. [c.221]
В хозяйстве имеется п видов ресурсов, которые находятся в собственности потребителей и предоставляются последними фирмам по некоторым ценам. Каждый потребитель может владеть любым числом видов ресурсов и не обязательно предлагает к продаже все количество имеющегося ресурса. Полученный доход потребители распределяют между разными потребительскими благами, максимизируя свои функции полезности. [c.221]
Здесь нам следует сразу заметить две вещи. Во-первых, из первичных ресурсов сразу производятся потребительские блага (нет промежуточных благ и их рынков). Во-вторых, поскольку у фирм отсутствуют постоянные затраты, в этой системе не существует деления на короткий и длительный периоды. Существует единое общее равновесие, которое по смыслу соответствует равновесию длительного периода. [c.221]
Таким образом, всего в хозяйстве существует п рынков ресурсов и m рынков потребительских благ. На каждом рынке существуют две переменные — цена и количество. На рынке отдельного блага это Р. [c.221]
Заметим, что один вектор цен (Pt... Рт р .. рп) задает объемы спроса и предложения сразу на всех рынках благ и ресурсов, так как выбор отдельного потребителя заключается в одновременном определении своего спроса и предложения на всех рынках хозяйства при заданных ценах. С подобной постановкой задачи мы уже сталкивались, когда рассматривали одновременный выбор индивидом предложения своего труда и спроса на блага. [c.223]
Кроме того, в этом векторе цен важно именно соотношение цен различных благ и ресурсов, а не их абсолютная величина. Пропорциональное изменение всех цен не вызовет изменения спроса и предложения на всех рынках. Например, если и цены благ, и цены ресурсов повысятся ровно в 2 раза, ни у одного потребителя не будет стимула для изменения своего поведения. [c.223]
Теперь мы можем подвести итог. Всего в нашей системе имеется 2л + 2т уравнений и 2л 4- 2тл - 1 неизвестных. Как видно, неизвестных меньше, чем уравнений, и это говорит о том, что одно из уравнений оказывается лишним. Если нам удастся исключить его из системы, доказав его зависимость от остальных, тогда общее равновесие оказывается возможным. [c.225]
Исключить одно уравнение действительно можно на основе следующего соображения. В условиях общего равновесия весь доход, полученный потребителями от продажи ресурсов, расходуется на рынках потребительских благ. Это значит, что общая стоимость ресурсов должна быть равна общей стоимости благ. Поэтому в условиях общего равновесия, зная цены и количества на всех рынках ресурсов и благ, кроме рынка блага, выбранного в качестве счетной единицы, мы можем рассчитать объем спроса на этом рынке остаточным способом. Поэтому одно из уравнений спроса оказывается зависимым от всех остальных уравнений в системе, и его можно исключить. Остается 2л + 2т -1 независимых уравнений. [c.225]
Таким образом, число уравнений оказывается равным числу неизвестных, и это означает возможность достижения общего равновесия в хозяйстве. [c.225]
Точно так же можно усложнять модель и далее, подсчитывая уравнения и неизвестные, но очевидно, что это не прибавит какого-то нового результата, который получен с помощью простой модели. Гораздо важнее и интереснее рассмотреть другие проблемы, которые будут касаться любой модели (и сложной, и простой) общего равновесия. [c.225]
Первое строгое доказательство существования общего равновесия осуществил в 1930-х гг. немецкий математик и статистик А. Вальд (1902-1960).1 Впоследствии это доказательство усовершенствовали в 1950-х гг. К. Эрроу и Ж. Дебре.2 В результате было показано, что существует единственное состояние общего равновесия с неотрицательными ценами и количествами, если выполняются два условия 1) существует постоянная или убывающая отдача от масштаба 2) для любого блага существует одно или несколько других благ, находящееся с ним в отношении замещения. [c.226]
Сначала необходимо ответить на вопрос, будет ли система двигаться в сторону равновесных цен и объемов. Это доказывается от противного если представить себе, что вначале реализуется некоторый произвольный вектор цен, который не соответствует равновесному, это будет означать излишек на одних рынках и дефицит на других. Это состояние приведет к росту цен на тех рынках, где имеется дефицит, и снижению цен на тех рынках, где наблюдается излишек. Изменение цен будет продолжаться до тех пор, пока не будет нащупан равновесный вектор цен. [c.226]
Вернуться к основной статье