ПОИСК
Это наилучшее средство для поиска информации на сайте
Приемы корреляционного анализа
из "Анализ хозяйственной деятельности предприятия "
Приемы корреляционного анализа используются для измерения влияния факторов в стохастическом анализе, когда взаимосвязь между показателями неполная, вероятностная. Различают парную и множественную корреляцию. Парная корреляция - это связь между двумя показателями, один из которых является факторным, а другой -результативным. Множественная корреляция возникает от взаимодействия нескольких факторов с результативным показателем. [c.64]Необходимые условия применения корреляционного анализа. 1. Наличие достаточно большого количества наблюдений о величине исследуемых факторных и результативных показателей (в динамике или за текущий год по совокупности однородных объектов). [c.64]
Первая задача решается путем подбора и обоснования соответствующего типа уравнения связи и нахождения его параметров. Уравнение связи обосновывается с помощью графиков, аналитических группировок и т.д. [c.65]
В качестве примера для иллюстрации корреляционного анализа прямолинейной зависимости используем приведенные втабл. 3.4 данные об изменении уровня выработки рабочих (Y) в зависимости от уровня фондовооруженности труда (х). [c.65]
Вычтя из второго уравнения первое, узнаем, что 2,76 b = 3,45. Отсюда Ь = 3,45/2,76 = 1, 25. [c.66]
Коэффициент а — постоянная величина результативного показателя, которая не связана с изменением данного фактора. Параметр b показывает среднее изменение результативного показателя с повышением или понижением величины фактора на единицу его измерения. В данном примере с увеличением фондовооруженности труда на 1 тыс. руб. выработка рабочих повышается в среднем на 1,25 тыс. руб. [c.66]
Полученная величина показывает, какой была бы выработка при фондовооруженности труда 3,1 тыс. руб., если бы данное предприятие использовало свои производственные мощности в такой степени, как в среднем все предприятия этой выборки. Фактическая выработка на данном предприятии выше расчетного значения. Следовательно, предприятие использует свои производственные мощности несколько лучше, чем в среднем по отрасли. Аналогичные расчеты сделаны для каждого предприятия. Данные приведены в последней графе табл. 4.3. Сравнение фактического уровня выработки рабочих с расчетным позволяет оценить результаты работы отдельных предприятий. [c.67]
Гипербола описывает такую зависимость между двумя показателями, когда при увеличении одной переменной значения другой увеличиваются до определенного уровня, а потом прирост снижается, например зависимость урожайности от количества внесенного удобрения, продуктивности животных от уровня их кормления, себестоимости единицы продукции от объема ее производства и т.д. [c.68]
При более сложном характере зависимости между изучаемыми явлениями используются более сложные параболы (третьего, четвертого порядка и т.д.), а также квадратические, степенные, показательные и другие функции. [c.68]
Подставив значения Х 1, Zx y, х2 и Xу2 в формулу из табл. 4.3, получим значение коэффициента корреляции, равное 0,97. Этот коэффициент может принимать значения от 0 до 1. Чем ближе его величина к 1, тем более тесная связь между изучаемыми явлениями, и наоборот. В данном случае величина коэффициента корреляции является существенной (/-=0,97). Это позволяет сделать вывод о том, что фондовооруженность — один из основных факторов, от которых на анализируемых предприятиях зависит уровень производительности труда. [c.68]
Если коэффициент корреляции возвести в квадрат, получим коэффициент детерминации (d = 0,94). Он показывает, что производительность труда на 94% зависит от фондовооруженности труда, а на долю других факторов приходится 6% изменения ее уровня. [c.68]
Эта формула является универсальной. Ее можно применять для исчисления коэффициента корреляции при любой форме зависимости. Однако для его нахождения требуется предварительное решение уравнения регрессии и расчет по нему теоретических (выравненных) значений результативного показателя для каждого наблюдения исследуемой выборки (см. гр. 7 в табл. 4.3). [c.69]
Коэффициенты уравнения показывают количественное воздействие каждого фактора на результативный показатель при неизменности других. В данном случае можно дать следующую интерпретацию полученному уравнению рентабельность повышается на 3,65% при увеличении материалоотдачи на I руб. на 0,09% — с ростом фондоотдачи на 1 коп. на 1,02% — с повышением среднегодовой выработки продукции на одного работника на 1 тыс. руб. на 0,052% - при увеличении удельного веса продукции высшей категории качества на 1%. С увеличением продолжительности оборота средств на 1 день рентабельность снижается в среднем на 0,122%. [c.69]
Подобные расчеты делаются по каждому фактору с последующим обобщением результатов анализа. [c.70]
Таким образом, многофакторный корреляционный анализ имеет важную научную и практическую значимость. С установлением места и роли каждого фактора в формировании уровня исследуемых показателей точнее обосновываются планы и управленческие решения, объективнее оцениваются итоги деятельности предприятий и полнее определяются внутрихозяйственные резервы. [c.70]
Вернуться к основной статье