Выделение тренда экспоненциальное сглаживание

Выделение тренда экспоненциальное сглаживание  [c.184]

Для выделения тренда используют разные приемы сглаживания, в том числе скользящих средних и экспоненциальное. Скользящие средние могут рассчитываться по трем, пяти, семи значениям временного ряда или по четным значениям. От количества точек при вычленении скользящих средних зависит степень сглаживания, снятие колебаний по отношению к линии тренда. Использование малого количества значений облегчает расчеты, однако снижает возможность получения объективного тренда.  [c.78]


Большая часть примеров, приведенных в данной главе, описывают основные методы выработки моделей прогнозирования. Во-первых, в большинстве случаев предполагается, что тренд — линейный. Далее, стандартный метод выделения тренда основывается на скользящих средних, хотя мы осветили и другие методы, в том числе экспоненциального сглаживания. Во-вторых, при получении прогнозных данных использовались все имеющиеся значения, тогда как на практике это может быть не лучшим вариантом, особенно в тех случаях, когда собранные данные включают некоторые нетипичные значения. На примерах этого раздела мы рассмотрим некоторые вопросы, связанные с практическим прогнозированием, при этом предполагается, что вы уже достаточно хорошо усвоили основные методы прогнозирования, в частности знаете, как выделять тренд и выявлять и вычислять сезонные составляющие.  [c.217]


Смотреть страницы где упоминается термин Выделение тренда экспоненциальное сглаживание

: [c.199]