Нормальное приращение в горизонтально-слоистой среде [c.8]
При сопоставлении уравнений (3.1) и (3.5) можно видеть, что скорость, требуемая для поправки за нормальное приращение в горизонтально-слоистой среде, равна среднеквадратичной скорости, при условии, что выполнена аппроксимация короткой расстановкой. [c.8]
Для одного горизонтального слоя с постоянной скоростью кривая времен пробега в функции выноса представляет собой гиперболу (Раздел 3.2). Разность времен пробега при данном выносе и при нулевом выносе называется нормальным приращением. Скорость, необходимая для ввода поправки за нормальное приращение, скоростью нормального приращения (NMO velo ity).Для одной горизонтальной отражающей поверхности скорость нормального приращения равна скорости в среде над отражающей поверхностью (ОН). Для наклонной ОН эта скорость равна скорости в среде, деленной на косинус угла наклона. При наблюдении наклонной ОП в трех измерениях дополнительным фактором становится азимут (угол между направлением падения и направлением профиля). Зависимость времени пробега от выноса для последовательности плоских горизонтальных слоев с постоянной скоростью аппроксимируется гиперболой. При меньших высотах эта аппроксимация лучше, чем при больших выносах. Для малых выносов скорость нормального приращения для горизонтально-слоистого разреза среднеквадратичной скорости до границы рассматриваемого слоя. В среде, состоящей из слоев с произвольными наклонами уравнение времени пробега усложняется. Однако, на практике, если наклоны незначительные, а длина расстановки меньше глубины отражающей поверхности, можно считать, что время пробега аппроксимируется гиперболой. Для границ слов, формы которых произвольны, это допущение не действительно. [c.2]