Бернулли максимизации

Точно так же, как вы могли пользоваться выражениями [1.04] для решения уравнений [1.03], уравнение [1.22] можно использовать для решения любых проблем с оптимальным/ Вместо формул [1.03-1.07] вы можете взять [1.22]. Для данных с распределением Бернулли это уравнение дает те же результаты, что и формулы Келли. Вы получите те же результаты, как и по формулам 1990 г., если подставите это распределение сделок (где вероятность каждой сделки равна 1/7) в [1.22]. Эту формулу можно использовать для максимизации ожидаемого значения логарифма любого начального количества чего угодно в условиях экспоненциального роста. Теперь посмотрим, как использовать эту формулу в контексте сценарного планирования.  [c.71]


Идея, что выбор среди альтернатив, предполагающих риск, может быть объяснен максимизацией ожидаемой полезности, — очень стара и относится, по меньшей мере, к известному анализу Санкт-Петербургского парадокса Д. Бернулли.5  [c.211]

Таким образом, как отмечалось выше, парадокс заключается в том, что ожидаемый денежный выигрыш в такой игре бесконечен, однако большинство людей уклонится от участия в ней.2 Почему же так происходит Чтобы объяснить Санкт-Петербургский парадокс, Д. Бернулли предположил, что в данном случае индивиды стремятся к максимизации не ожидаемого денежного выигрыша, а морального ожидания, впоследствии названного ожидаемой полезностью выигрыша. А это не  [c.192]

Смотреть страницы где упоминается термин Бернулли максимизации

: [c.51]   
Методы и модели управления фирмой (2001) -- [ c.30 ]