Устройство нейронные сетей

УСТРОЙСТВО НЕЙРОННЫХ СЕТЕЙ  [c.21]

Процедура использования этих программ состоит в том, что на большом массиве известных данных мы можем обучать эту программу. Подавая на вход программы набор данных, мы просим ее спрогнозировать результат. После ее прогноза мы поправляем ее, сообщая точный результат. Таким образом, с помощью большого количества обучающих циклов мы настраиваем программу на анализ конкретных данных. При этом мы не пытаемся сами определить никаких правил или закономерностей, которые влияли бы на ее работу. Успешность обучения программы, конечно, зависит от способностей учителя. Он должен представлять себе устройство программы и суметь выделить те данные, которые необходимо передавать нейронной сети для анализа, и т.п.  [c.166]


Следующий шаг разработки нейронного прогностического устройства — реальная тренировка нескольких сетей на полученном наборе фактов. Обучают серию нейронных сетей различного размера, причем метод отбора наиболее хорошо обученной и устроенной сети не состоит, как можно было бы подумать, в проверке ее эффективности на данных вне пределов выборки. Вместо этого проводится коррекция коэффициентов корреляции (показателей прогностических способностей каждой сети), причем коэффициент коррекции зависит от размера выборки данных и количества параметров (связей между нейронами) в исследуемой сети. При этом используется то же уравнение, что и при коррекции множественных корреляций, получаемых при многовариантной регрессии (см. главу о статистике и оптимизации). Чем больше и сложнее сеть, тем сильнее будут скорректированы (в меньшую сторону) коэффициенты корреляции. Этот подход помогает оценить степень излишней подгонки системы под исходные данные. Чтобы большая сеть превзошла маленькую, она должна давать значительно больший коэффициент корреляции. Этот метод позволяет выбирать лучшие сети без обычного обращения к данным вне пределов выборки. Все сети проходят полное обучение, т.е. не делается попыток скомпенсировать снижение степеней свободы меньшим обучением сети.  [c.258]


Простейшим устройством распознавания образов, принадлежащим к рассматриваемому классу сетей, является одиночный нейрон, превращающий входной вектор признаков в скалярный ответ, зависящий от линейной комбинации входных переменных  [c.51]

Идея разработки систем обработки интеллектуальной информации по образу устройства нервной системы возникла давно. В 1943 г. МакКаллох и Пите создали упрощенную модель нервной клетки — нейрон. Мозг человека содержит до ДО11 нейронов различных видов, при этом все они сложным образом связаны между собой и собраны в популяции — нейронные сети.  [c.20]

Технологии нейровычислений. Они эффективно реализуют определенные виды сложной обработки информации на специально созданных программно-технических устройствах, входящих в состав персональных ЭВМ и работающих по принципам нейронных сетей.  [c.24]

В основе нейронной сети, называемой динамическим ассоциативным запоминающим устройством (ДАЗУ), лежит идея отображения входных последовательностей в траектории — трубки многомерного сигнального пространства с сохранением топологии пространства перцептивных признаков. Этот принцип, предложенный А.Н. Радченко для интерпретации работы реального нейрона [49] и развитый впоследствии в [50, 51], позволяет построить нейронную сеть, способную к распознаванию речевых образов на основе последовательностей векторов параметров первичного описания сигнала.  [c.107]

Кора больших полушарий головного мозга человека содержит около 14 млрд. нейронов, образующих сложнейшее переплетение связей. Устройство и законы функционирования самого нейрона также очень сложны, что позволяет использовать для его описания только упрощенные модели. Такие модели носят название нейроноподобных сетей. Используются они для построения систем управления различными робототехническими устройствами. Нейроноподобные сети являются устройствами параллельной обработки информации и имеют преимущества при построении систем, предназначенных для работы в реальном масштабе времени.  [c.63]


Смотреть страницы где упоминается термин Устройство нейронные сетей

: [c.14]