Моделирование циклических колебаний в целом осуществляется аналогично моделированию сезонных колебаний, поэтому мы рассмотрим только методы моделирования последних. [c.239]
Рассмотрим еще один метод моделирования временного ряда, содержащего сезонные колебания, — построение модели регрессии с включением фактора времени и фиктивных переменных. Количество фиктивных переменных в такой модели должно быть на единицу меньше числа моментов (периодов) времени внутри одного цикла колебаний. Например, при моделировании поквартальных данных модель должна включать четыре независимые переменные — фактор времени и три фиктивные переменные. Каждая фиктивная переменная отражает сезонную (циклическую) компоненту временного ряда для какого-либо одного периода. Она равна единице для данного периода и нулю для всех остальных периодов. [c.252]
Изучение причинно-следственных зависимостей переменных, представленных в форме временных рядов, является одной из самых сложных задач эконометрического моделирования. Применение в этих целях традиционных методов корреляционно-регрессионного анализа, рассмотренных в главах 2 и 3, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании. В главе 5 было показано, что каждый уровень временного ряда содержит три основные компоненты тенденцию, циклические или сезонные колебания и случайную компоненту. Рассмотрим подробнее, каким образом наличие этих компонент сказывается на результатах корреляционно-регрессионного анализа временных рядов данных. [c.263]
Смотреть главы в:
Эконометрика -> Моделирование сезонных и циклических колебаний