Допущения в дисперсионном анализе

Обобщим допущения дисперсионного анализа  [c.616]

Процедура дисперсионного анализа и его применения помогут понять допущения данного анализа.  [c.616]


ДОПУЩЕНИЯ В ДИСПЕРСИОННОМ АНАЛИЗЕ  [c.616]

Дисперсионный анализ (ANOVA) чрезвычайно полезный инструмент в практике маркетинговых исследований, поскольку именно его используют чаще всего для снижения кумулятивной ошибки. Она представляет собой кумулятивный эффект ошибки I рода (ошибка первого рода означает утверждение, что числа различаются, когда фактически они не различаются между собой) во всех парных сравнениях, Однако, прежде чем вы решите использовать дисперсионный анализ, должны убедиться, что вы имеете соответствующие данные, Дисперсионный анализ служит методом выявления различий между номинальными независимыми переменными, влияющими на значения метрической зависимой переменной. Помимо того, что вы должны иметь номинальную независимую переменную (например, торговую марку, товар) и метрическую зависимую переменную (например, рейтинги эффективности, рейтинги важности, уровни осведомленности), ваши данные должны удовлетворять следующим допущениям дисперсионного анализа значения переменных в выборке должны подчиняться закону нормального распределения и дисперсии совокупностей должны быть равны. Если окажется, что данные в значительной степени не удовлетворяют этим допущениям, то следует использовать непараметрические методы, например критерий  [c.818]


Часто при анализе данные соответствуют описанным выше допущениям, Поэтому дисперсионный анализ достаточно распространен, что и подтверждают следую-iпримеры.  [c.617]