Сложная функция. Пусть функция у = f(u) есть функция от переменной и, определенной на множестве U с областью значений У, а переменная и в свою очередь является функцией и = д(х] от переменной ж, определенной на множестве X с областью значений U. Тогда заданная на множестве X функция у = f(g(x называется сложной функцией (или композицией функций, суперпозицией функций, функцией от функции). [c.37]
Сложная функция. Функция, заданная в виде у =f(g(x)), называется сложной функцией х или суперпозицией функций g и / Сложную функцию часто записывают в виде у = Ди), где и = g(x). при этом аргумент х называют независимой переменной, а и - промежуточным аргументом. [c.26]
Определение 9. Ее in на некотором промежутке X определена функция г-ф(лг) с множеством значений Z и на множестве Z определена функция у =/(z), то функция у Л<Р ("01 называется сложной функцией от х (или суперпозицией функции), а переменная z — промежуточной переменной сложной функции. [c.87]
Сложные е функции (суперпозиции) [c.92]
В научной среде широко известна шутка на эту тему "нелинейность" сравнивается с "не-слоном" - все создания, кроме "слонов", являются "не-слонами". Сходство заключается в том, что большинство систем и явлений в окружающем нас мире нелинейны, за малым исключением. Вопреки этому, в школе нас учат "линейному" мышлению, что очень плохо, с точки зрения нашей готовности к восприятию всепроникающей нелинейности Вселенной, будь то ее физические, биологические, психологические или социальные аспекты. Нелинейность концентрирует в себе одну из основных сложностей познания окружающего мира поскольку следствия, в общей своей массе, не пропорциональны причинам, две причины, при взаимодействии, не аддитивны, то есть следствия являются более сложными, чем простая суперпозиция, функциями причин. То есть, результат, получающийся в результате присутствия и воздействия двух причин, действующих одновременно, не является суммой результатов, полученных в присутствии каждой из причин в отдельности, при отсутствии другой причины. [c.168]
Здесь будут в общих чертах приведены результаты решения ряда вариационных задач (1)—(3). Они решались методом последовательной линеаризации ( 19—21) еще в 1962—1963 гг., когда технология метода только начинала складываться и проходила проверку. Поэтому мы остановимся лишь на некоторых деталях. Прежде всего заметим, что функции С и С2 были заданы достаточно сложными выражениями, являющимися суперпозицией вспомогательных функций, в том числе и заданных таблично. Поэтому при решении сопряженной системы ф=—fxиспользованием функций, заданных таблично. Обычно подобные таблицы содержат небольшое число значений для набора узлов в области изменения независимого аргумента, а между ними функция интерполируется линейно, так как применение более точных методов интерполяции не оправдано ввиду неточности самих табличных значений (как правило, таблицами задаются функциональные зависимости экспериментального характера). Однако для наших целей нужны дифференцируемые функции / (х, и), поэтому следует предпочесть гладкие методы восполнения таблично заданной функции (например, с помощью сплайнов). [c.250]
Смотреть страницы где упоминается термин Сложные функции (суперпозиции)
: [c.379] [c.144]Смотреть главы в:
Справочник по математике для экономистов -> Сложные функции (суперпозиции)