Аппроксимация стохастическая при сложных целевых функционалах

Классические схемы стохастической аппроксимации разработаны для случая, когда оптимизируемая функция f(x) представляет собой функцию регрессии некоторой случайной величины у(х), зависящей от параметров — составляющих вектора к. Межлу тем различные прикладные задачи порождают необходимость в безусловной или условной оптимизации функций R(f(x)) от функции регрессии и более сложных целевых функционалов. Так, например, обобщенные задачи фильтрации и прогноза, рассмотренные в гл. 14, сводятся к оптимизации функционала вида R( kij , т), где т=тх, kij = kij(x) —первые и вторые моменты случайных ошибок прогноза, зависящие как от параметров (конечно-мерных или бесконечномерных), так и от характеристик механизма сглаживания и упреждения. Решение некоторых двухэтажных задач стохастического программирования сводится к оптимизации функционала вида  [c.372]


Математические методы управления в условиях неполной информации (1974) -- [ c.372 ]