Рассмотрим итеративный метод решения задачи (4.15) вогнутого программирования, представляющий собой обобщение метода Гаусса — Зейделя покоординатного спуска. В [83] метод Гаусса — Зей-деля распространен на случай, когда на каждом шаге производится оптимизация не по отдельным переменным, а по векторам, составляющие которых — некоторые подмножества множества переменных задачи. Задача (4.15) не укладываетя в класс задач, для решения которых в [83] обосновано обобщение метода покоординатного спуска. Векторы X/j( oh ) — аргументы функции
Рассмотрим итеративный метод решения задачи (4.15) вогнутого программирования, представляющий собой обобщение метода Гаусса — Зейделя покоординатного спуска. В [83] метод Гаусса — Зей-деля распространен на случай, когда на каждом шаге производится оптимизация не по отдельным переменным, а по векторам, составляющие которых — некоторые подмножества множества переменных задачи. Задача (4.15) не укладываетя в класс задач, для решения которых в [83] обосновано обобщение метода покоординатного спуска. Векторы X/j( oh ) — аргументы функции