Гетероскедастичность устранение

Вспомним, что наиболее часто употребляемые процедуры устранения гетероскедастичности так или иначе были основаны на предположении, что дисперсия ошибок регрессии ст2 является функцией от каких-то регрессоров. Если а2 существенно зависит от регрессора Z, а при спецификации модели регрессор Z не был включен в модель, стандартные процедуры могут не привести к устранению гетероскедастичности.  [c.250]


Отметим, что для применения описанных выше преобразований существенную роль играют знания об истинных значениях дисперсий отклонений уравнение регрессии объясняющих переменных, а от тех, которые не включены в модель, но играют существенную роль в исследуемой зависимости. В этом случае они должны быть включены в модель. В ряде случаев для устранения гетероскедастичности необходимо изменить спецификацию модели (например, линейную на лог-линейную, мультипликативную на аддитивную и т. п.).  [c.222]

В главе 7 представлены обобщенная линейная модель множественной регрессии и обобщенный метод наименьших квадратов. Исследуется комплекс вопросов, связанных с нарушением предпосылок классической модели регрессии — гетероскедастично-стью и автокоррелированностью остатков временного ряда, их тестированием и устранением, идентификацией временного ряда.  [c.4]


Тест Уайта. Тест ранговой корреляции Спирмена и тест Голдфелда—Квандта позволяют обнаружить лишь само наличие гетероскедастичности, но они не дают возможности проследить количественный характер зависимости дисперсий ошибок регрессии от значений регрессоров и, следовательно, не представляют каких-либо способов устранения гетероскедастичности.  [c.161]

На практике процедура устранения гетероскедастичности может представлять технические трудности. Дело в том, что реально в формулах (7.26) присутствуют не сами стандартные отклонения ошибок регрессии, а лишь их оценки. А это значит, что модель (7.27) вовсе не обязательно окажется гомоскедастичной.  [c.166]

Смотреть страницы где упоминается термин Гетероскедастичность устранение

: [c.15]    [c.163]   
Эконометрика (2002) -- [ c.163 , c.167 ]