Под мулыпикаллинеарностью понимается высокая взаимная коррелированностъ объясняющих переменных. Мультиколлинеарность может проявляться в функциональной (явной) и стохастической (скрытой) формах. [c.108]
Совершенная мультиколлинеарность является скорее теоретическим примером. Реальна же ситуация, когда между объясняющими переменными существует довольно сильная корреляционная зависимость, а не строгая функциональная. Такая зависимость называется несовершенной мулътиколлинеарностъю. Она характеризуется высоким коэффициентом корреляции р между соответствующими объясняющими переменными. Причем, если значение р по абсолютной величине близко к единице, то говорят о почти совершенной мульти-коллинеарности. В любом случае мультиколлинеарность затрудняет разделение влияния объясняющих факторов на поведение зависимой переменной и делает оценки коэффициентов регрессии ненадежными. Данный вывод наглядно подтверждается с помощью диаграммы Вен-на (рис. 10.1). [c.246]