Чтобы расширить круг задач стохастического программирования, для которых стохастическая аппроксимация может служить итеративным методом решения, целесообразно также отказаться от рассмотрения ошибок наблюдения как аддитивного шума, наложенного на детер-. минированный процесс аппроксимации. На. этом предположении основано доказательство сходимости большинства вычислительных схем стохастической аппроксимации. Некоторые задачи стохастического программирования (см., например, 5 гл. 14 Обобщенные задачи фильтрации и прогноза ) требуют разработки итеративных процессов оптимизации функционалов вида / (Мш<р (ю, х)) на некотором множестве X. Итеративные процессы решения некоторых классов двухэтапных задач стохастического программирования должны обеспечить последовательную условную оптимизацию функционалов вида M JR М (ш,, о>2, хг,х2), [c.343]
Чтобы расширить круг задач стохастического программирования, для которых стохастическая аппроксимация может служить итеративным методом решения, целесообразно также отказаться от рассмотрения ошибок наблюдения как аддитивного шума, наложенного на детер-. минированный процесс аппроксимации. На. этом предположении основано доказательство сходимости большинства вычислительных схем стохастической аппроксимации. Некоторые задачи стохастического программирования (см., например, 5 гл. 14 Обобщенные задачи фильтрации и прогноза ) требуют разработки итеративных процессов оптимизации функционалов вида / (Мш<р (ю, х)) на некотором множестве X. Итеративные процессы решения некоторых классов двухэтапных задач стохастического программирования должны обеспечить последовательную условную оптимизацию функционалов вида M JR М (ш,, о>2, хг,х2), [c.343]