Смесь гауссовских распределений
Подчеркнем, что при каждом t распределение величины Zt = B есть смесь гауссовских распределений. По-другому можно сказать, что распределение величин Zt является условно-гауссовским. Эти распределения уже рассматривались выше (см. ld, 3a в гл. II). Далее, в ld, будут рассмотрены другие модели, основанные на "гиперболических" распределениях, которые также являются условно-гауссовскими и относятся к классу безгранично делимых распределений, не будучи устойчивыми. Все это говорит о том, что поиски "правильного" описания эволюции цен финансовых индексов идут, в некотором смысле, в направлении обращения к условно-гауссовским распределениям и процессам.
[c.260]
Смесь гауссовских распределений 265
[c.486]
Основы стохастической финансовой математики Т.1
(0) -- [
c.265
]
Основы стохастической финансовой математики Т.2
(1998) -- [
c.265
]