Множество базовых понятий свойств ЯСУ

В случае теории игр такими базовыми понятиями являются, во-первых, понятия игрока (стороны в конфликте), стратегии (способа его действий) и выигрыша (оценки складывающейся ситуации), объединяемые в единое понятие игры, как это описьюается, например, в п. 1.3, а, во-вторых, понятия оптимальности, как формального представления некоторого синтеза содержательных понятий выгодности, устойчивости и справедливости. Различные варианты понятий игры и оптимальности порождают различные разделы теории игр и различные подходы к их изучению. Формально они выделяются из общей теории игр "структурными" признаками, которые формулируются в абстрактных математических терминах. К таким признакам относятся те или иные "структурные" свойства множеств стратегий игроков. Например, представляет интерес говорить о топологических (в том числе — компактных), линейных (и в том числе евклидовых данной размерности) или измеримых пространствах стратегий, К структурным свойствам игры можно отнести также конечность множеств стратегий игроков. Структурным же свойством игры можно считать такое свойство функций выигрыша, как их непрерывность (или полунепрерывность).  [c.20]


Ситуационное управление теория и практика (1986) -- [ c.62 ]