При этом гипотеза гауссовского белого шума для ряда остатков не отвергается. Это означает, что мы имеем здесь дело со стохастической коинтеграцией. В рамках расширенной модели не отвергается гипотеза о равенстве 0.5 коэффициентов при тренде и Wt. График ряда Vt - Q.5t - 0.5 Wt имеет вид [c.219]
Анализ временных рядов включает в себя очень широкий спектр проблем. В этой главе мы ограничимся четырьмя целями. Первая — это объяснить доступным языком значение наиболее важных терминов, используемых- и анализе временных рядов (динамических процессов). Вторая — проанализировать процесс построения временных рядов как однофакторный стохастический процесс, т.е. стохастический процесс, составляющие которого являются функциями одной рассматриваемой переменной. Третья и четвертая цели — объяснить два эконометрических метода, используемых для анализа временных рядов. Термин "эконо-метрические методы" здесь показывает, что процесс моделируется как функция, зависящая от нескольких переменных, не только от рассматриваемой. Два метода, которые в последнее время все чаще используются при анализе финансовой информации, — это коинтеграция и авторегрессионная условная гетероскедастичность (AR H) и ее обобщенная форма — GAR H. Однако перед тем, как приступить к анализу этих концепций, мы должны определиться с некоторыми понятиями и объяснить некоторые основные формы анализа временных рядов. [c.314]
В приведенных определениях ненулевой вектор /3 = (fi, . .., / д/)г определялся как коинтегрирующий вектор, если fi y t +. .. + f>NyNt стационарный ряд. Это означает, что если ряды y t, . .., yxt (по крайней мере, некоторые из них) содержат, наряду со стохастическим, еще и детерминированные тренды, то тогда коинтегрирующий вектор должен аннулировать оба вида трендов одновременно. И в связи с этим, коинтеграцию в узком смысле называют еще детерминистской коинтеграцией. [c.193]
Наблюдаемая ситуация известна теперь под названием "стохастическая коинтеграция". Оно указывает на наличие коинтеграционной связи между стохастическими трендами, входящими в состав рассматриваемых рядов, и не требует согласованности детерминированных трендовых составляющих ( если таковые имеются). В этом случае коинтегрирующий вектор аннулирует стохастический тренд, но не обязан одновременно аннулировать и детерминированный тренд. Другими словами, существует линейная комбинация рассматриваемых рядов, которая образует ряд, стационарный относительно детерминированного тренда, но не обязательно стационарный. [c.200]
В противоположность стохастической коинтеграции, при наличии коинтеграции в узком смысле коинтегрирующий вектор аннулирует и стохастический и [c.200]
Заметим, что если мы имеем дело со стохастической (а не с детерминистской) коинтеграцией, то для достижения стационарности рядов zi t, , zr,t приходится в "остационаривающую" линейную комбинацию рядов y t, . .., у t включать еще и дополнительную трендовую составляющую, так что в этом случае речь идет о существовании стационарных линейных комбинаций (N +1) переменныхy t,. .., y t и t, в которых не все коэффициенты равны нулю. [c.204]