Совместимость с принципом Бернулли

Все рассуждения по поводу оценки рискованных результатов, которые делались нами в предыдущих разделах, основываются на аксиоме рациональности. Этого нельзя сказать a priori о классических правилах принятия решения. Инвесторы, которые принимают решение на основе этих правил, скорее, прагматично относятся к негарантированным результатам. Они исходят из того, что распределение описывается определенными показателями, такими как математическое ожидание и дисперсия. В качестве аргументов в функции полезности лица, принимающего решение, эти показатели указывают на выбор наилучшего распределения. Естественно, этот подход провоцирует вопрос о том, нельзя ли аксиоматично обосновать классические правила принятия решения, несмотря на их, скорее всего, эвристический характер. Или, иными словами, совместимы ли друг с другом принцип Бернуллй и классический критерий математического ожидания — дисперсии. После рассмотрения данного аспекта мы обратимся к системе кривых безразличия функции полезности на основе математического ожидания и дисперсии.  [c.87]


Смотреть страницы где упоминается термин Совместимость с принципом Бернулли

: [c.87]