Последствия мультиколлинеарности
Все эти эффекты затрудняют и без того сложную задачу интерпретации коэффициентов регрессии или вообще делают невозможным ее решение без привлечения новых способов обработки и дополнительной информации. В этих условиях нельзя применять уравнение регрессии и для прогноза значений переменной у. В то же время если уравнение регрессии предполагается использовать для целей прогноза значений переменной у только в точках, близких к значениям объясняющих переменных х(1 . .., х из матрицы данных X, то оно может оказаться вполне удовлетворительным независимо от степени связи между предсказывающими переменными качество уравнения регрессии определяется значением коэффициента множественной корреляции Ry.x между переменной у и переменными X (хотя при этом может быть необходимо принять некоторые предосторожности чисто вычислительного характера). Таким образом, последствия мультиколлинеарности тем серьезнее, чем больше информации мы хотим получить из имеющейся совокупности наблюдений.
[c.254]
Обычно выделяются следующие последствия мультиколлинеарности
[c.247]
Отметим, что единого метода устранения мультиколлинеарности, годного в любом случае, не существует. Это связано с тем, что причины и последствия мультиколлинеарности неоднозначны и во многом зависят от результатов выборки.
[c.251]
Основные последствия мультиколлинеарности таковы
[c.160]
В десятой главе анализируются последствия линейной зависимости между объясняющими переменными в модели множественной линейной регрессии - мультиколлинеарности. Приводятся способы обнаружения и преодоления мультиколлинеарности.
[c.8]
Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий
[c.95]
Смотреть страницы где упоминается термин Последствия мультиколлинеарности
:
[c.247]
Смотреть главы в:
Вводный курс эконометрики
-> Последствия мультиколлинеарности