Методы устранения мультиколлинеарности

Назовите методы устранения мультиколлинеарности факторов.  [c.175]

Методы устранения мультиколлинеарности  [c.251]

Прежде чем указать основные методы устранения мультиколлинеарности, отметим, что в ряде случаев мультиколлинеарность не является таким уж серьезным злом, чтобы прилагать серьезные усилия по ее выявлению и устранению. Ответ на этот вопрос в основном зависит от целей исследования.  [c.251]


Отметим, что единого метода устранения мультиколлинеарности, годного в любом случае, не существует. Это связано с тем, что причины и последствия мультиколлинеарности неоднозначны и во многом зависят от результатов выборки.  [c.251]

Простейшим методом устранения мультиколлинеарности является исключение из модели одной или ряда коррелированных переменных.  [c.251]

Перечислите основные методы устранения мультиколлинеарности.  [c.254]

В эту группу входят методы анализа многофакторных зависимостей в условиях, когда факторы существенно коррелируют между собой. Дело в том, что практическое применение классических регрессионных моделей в экономическом анализе сопряжено с необходимостью преодоления ряда трудностей, основная из которых — мультиколлинеарность факторов. Особенность экономического анализа заключается в тесной взаимосвязи и взаимообусловленности показателей, поэтому бездумное и необоснованное включение в регрессионную модель бессистемно отобранных показателей нередко приводит к искусственности модели, невозможности ее использования на практике. Если пытаться следовать формальным требованиям регрессионного анализа в полном объеме, то, например, устранение мультиколлинеарности нередко сводится к отбрасыванию существенно коррелирующих факторов. В этом случае, во-первых, имеет место потеря информации и, во-вторых, анализ чаще всего выхолащивается, в некотором роде теряет смысл, поскольку модель сводится к одно- или двухфакторной.  [c.128]


В предыдущих главах была изучена классическая линейная модель регрессии, приведена оценка параметров модели и проверка статистических гипотез о регрессии. Однако мы не касались некоторых проблем, связанных с практическим использованием модели множественной регрессии. К их числу относятся мультиколлинеарность, ее причины и методы устранения использование фиктивных переменных при включении в регрессионную модель качественных объясняющих переменных, линеаризация модели, вопросы частной корреляции между переменными. Изучению указанных проблем посвящена данная глава.  [c.108]

Еще одним из возможных методов устранения или уменьшения мультиколлинеарности является использование пошаговых процедур отбора наиболее информативных переменных. Например,  [c.111]

Чем меньше эта разность, тем меньше мультиколлинеарность. Для устранения мультиколлинеарности используется метод исключения переменных. Этот метод заключается в том, что высоко коррелированные объясняющие переменные (факторы) устраняются из регрессии и она заново оценивается. Отбор переменных, подлежащих исключению, производится с помощью коэффициентов парной корреляции. Опыт показывает, что если I ryj 0,70, то одну из переменных можно исключить, но какую переменную исключить из анализа, решают исходя из управляемости факторов на уровне предприятия.  [c.152]

Среди мер по устранению или уменьшению мультиколлинеарности отметим следующие 1) построение уравнений регрессии по отклонениям от тренда или конечным разностям 2) преобразование множества независимых переменных в несколько ортогональных множеств при помощи методов многомерного статистического анализа (факторного анализа или метода главных компонент) 3) исключение из рассмотрения одного или нескольких линейно связанных аргументов.  [c.71]


Для устранения или уменьшения мультиколлинеарности используется ряд методов. Самый простой из них (но далеко не всегда возможный) состоит в том, что из двух объясняющих переменных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом, какую переменную оставить, а какую удалить из анализа, решают в первую  [c.109]

Классическая линейная модель множественной регрессии (КЛММР). Оценка неизвестных параметров КЛММР, статистические свойства оценок. Отбор наиболее существенных объясняющих переменных в КЛММР. Признаки и причины мультиколлинеарности. Методы устранения мультиколлинеарности. Множественная корреляция. Частная корреляция. Оценка  [c.3]

Смотреть страницы где упоминается термин Методы устранения мультиколлинеарности

: [c.39]