Оценка параметров модели

Четвертая бинарная переменная, относящаяся к осени, не вводится, так как тогда для любого месяца будет выполняться тождество dt + d2 + d + линейную зависимость регрессоров и как следствие невозможность получения оценок параметров модели методом наибольших общих квадратов, используемым в большинстве статистических пакетов.  [c.93]


Q идентификация и оценка параметров модели  [c.428]

В отличие от регрессионных уравнений тождества не содержат подлежащих оценке параметров модели и не включают случайной составляющей.  [c.19]

В предыдущих главах была изучена классическая линейная модель регрессии, приведена оценка параметров модели и проверка статистических гипотез о регрессии. Однако мы не касались некоторых проблем, связанных с практическим использованием модели множественной регрессии. К их числу относятся мультиколлинеарность, ее причины и методы устранения использование фиктивных переменных при включении в регрессионную модель качественных объясняющих переменных, линеаризация модели, вопросы частной корреляции между переменными. Изучению указанных проблем посвящена данная глава.  [c.108]

Таким образом, получаем зависимость производительности труда (Y/L) от его капиталовооруженности (K/L). Для оценки параметров модели (5. 18) -путем логарифмирования приводим ее к виду (для /-го наблюдения)  [c.127]


Решение. От исходных значений переменных K/L и Y/L перейдем к их натуральным логарифмам и, используя метод наименьших квадратов, рассчитаем оценки параметров модели (5.19)1. Получим  [c.128]

Взвешивая каждый остаток е = j), - yt с помощью коэффициента 1/ст/, мы добиваемся равномерного вклада остатков в общую сумму, что приводит в конечном счете к получению наиболее эффективных оценок параметров модели.  [c.164]

Для предприятий с высокой степенью автоматизации процессов управления, оснащенных развитой АСУ ТП, предпочтителен оптимизационный метод оценки параметров моделей планирования, который обеспечивает методологическое единство математических моделей, синтезируемых для различных уровней управления.  [c.37]

Статистическая оценка параметров модели обусловливает использование в качестве номинальных значений элементов а ( = 1, Mv) вектора Р" средневзвешенных или средних значений, а предельно допустимые значения технологических коэффициентов а определяются из выражений  [c.37]

Статистическая оценка параметров модели планирования 37 Статистические ограничения 53, 55, 58,  [c.229]

Экспертная оценка параметров модели планирования 37  [c.230]

Модель представляет собой систему одновременных уравнений. Для ответа на вопрос о способе оценки параметров модели проверим каждое ее уравнение на идентификацию.  [c.118]

Определите метод оценки параметров модели.  [c.121]

В рассмотренном примере качественный фактор имел только два состояния, которым и соответствовали обозначения 1 и 0. Если же число градаций качественного признака-фактора превышает два, то в модель вводится несколько фиктивных переменных, число которых должно быть меньше числа качественных градаций. Только при соблюдении этого положения матрица исходных фиктивных переменных не будет линейно зависима и возможна оценка параметров модели.  [c.146]


Чтобы понять, каковы последствия автокорреляции в остатках для оценок параметров модели регрессии, найденных обычным МНК, построим формальную модель, описывающую авто-  [c.278]

Рассмотрим основной подход к оценке параметров модели регрессии в случае, когда имеет место автокорреляция остатков. Для этого вновь обратимся к исходной модели (6.1). Для момента времени / — 1 эта модель примет вид  [c.280]

В зависимости от способа определения ожидаемых значений показателей различают модели неполной корректировки, адаптивных ожиданий и рациональных ожиданий. Оценка параметров этих моделей сводится к оценке параметров моделей авторегрессии.  [c.290]

Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии существует определенная взаимосвязь, и в некоторых случаях необходимо осуществлять переход от одного типа моделей к другому.  [c.292]

В-третьих, в моделях с распределенным лагом часто возникает проблема автокорреляции остатков. Вышеуказанные обстоятельства приводят к значительной неопределенности относительно оценок параметров модели, снижению их точности и получению неэффективных оценок. Чистое влияние факторов на результат в таких условиях выявить невозможно. Поэтому на практике параметры моделей с распределенным лагом проводят в предположении определенных ограничений на коэффициенты регрессии и в условиях выбранной структуры лага.  [c.295]

Полученная модель есть модель двухфакторной линейной регрессии (точнее - авторегрессии). Определив ее параметры, мы найдем X и оценки параметров а п Ьо исходной модели. Далее с помощью соотношений (7.17) несложно определить параметры b, b2,... модели (7.16). Отметим, что применение обычного МНК к оценке параметров модели (7.22) приведет к получению смещенных оценок ее параметров ввиду наличия в этой модели в качестве фактора лаговой результативной переменной yt  [c.307]

ОЦЕНКА ПАРАМЕТРОВ МОДЕЛЕЙ АВТОРЕГРЕССИИ  [c.325]

Еще один метод, который можно применять для оценки параметров моделей авторегрессии типа (7.2), — это метод максимального правдоподобия, рассмотрение которого выходит за рамки данного учебника.  [c.327]

Другой недостаток моделей векторной авторегрессии — необходимость принятия решения относительно величины лага, адекватных методов оценки параметров модели, поскольку обычный МНК, как было показано выше, чаще всего неприменим при оценке параметров моделей с распределенным лагом и тем более неприменим для оценки параметров моделей авторегрессии. Поэтому методы оценки параметров моделей VAR очень громоздки, и в настоящее время далеко не все статистические пакеты прикладных программ имеют эту функцию. Однако в целом модели VAR потенциально значительно проще структурных моделей.  [c.332]

Изложите методику применения метода инструментальных переменных для оценки параметров модели авторегрессии.  [c.336]

Результаты оценки параметров моделей подтвердили правильность произведенной  [c.94]

Достаточное условие выполняется, уравнение точно идентифицируемо. Следовательно, исследуемая система одновременных уравнений точно идентифицируема, и для оценки параметров модели может быть использован косвенный метод наименьших квадратов.  [c.7]

Под идентификацией модели понимается выбор переменных модели, а также вида и параметров ее уравнений с последующей их оценкой на основе статистических данных, полученных в результате наблюдения или эксперимента (см. Оценка параметров модели).  [c.113]

Для получения оценок параметров модели в большинстве случаев используют метод наименьших общих квадратов, основанный на минимизации среднеквадратической ошибки модели и его модификации5.  [c.89]

При выборе экономических переменных необходимо теоретическое обоснование каждой переменной (при этом рекомендуется, чтобы число их было не очень большим и, как минимум, в несколько раз меньше числа наблюдений). Объясняющие переменные не должны быть связаны функциональной или тесной корреляционной зависимостью, так как это может привести к невозможности оценки параметров модели или к получению неустойчивых, не имеющим реального смысла оценок,- т. е. к явлению мулътиколлинеарности (см. об этом гл. 5).  [c.21]

Еще одним существенным различием является то. что для методов статистики не имеет значения, каким образам будет минимизироваться невязка - в любом случае модель остается той же самой, в то время как для нейрокомпьютинга главную роль играет именно метод обучения. Иными словам и. в отличие от нейросетевого подхода оценка параметров модели для статистических методов не зависит от метода минимизации. В то же время статистики будут рассматривать изменения вида невяэки скажем на  [c.201]

Однако, основная трудность здесь состоит в том, что экономические данные (в особенности, в периоды, когда ситуация быстро меняется) содержат гораздо меньше степеней свободы, чем это требуется для оценки параметров модели. Поэтому специалисты, занимающиеся анализом временных рядов, пользуются хорошо специфицированными статистическими моделями со всего одной или двумя переменными. Кроме этого, методы ARIMA и VAR успешно применялись и для непосредственной оценки поступления налогов (см. [24], [202]). Реально MoF Голландии оценивает ежемесячные поступления с помощью модели ARIMA(0,0,0)(0,l,l)i2- Для прогнозов задним числом модели временных рядов типа ARIMA-MoF часто оказываются не хуже эконометрических, но у них есть тот недостаток, что эти модели не содержат переменных и соотношений, и, следовательно, по результатам расчетов трудно сделать какие-либо выводы относительно экономической политики.  [c.96]

Изучение этой дисциплины предполагает приобретение студентами опыта построения эконометрических моделей, принятия решений о спецификации и идентификации модели, выбора метода оценки параметров модели, интерпретации результатов, получения прогнозных оценок. Студенты должны также научиться давать статистическую оценку значимости таких искажающих эффектов, как гетероскеда-стичность остатков зависимой переменной, мультиколлинеарность объясняющих переменных, автокорреляция. В связи с этим курс эконометрики обязательно включает решение задач. Соответственно методическое обеспечение курса должно состоять из учебника и практикума.  [c.3]

Оценку параметров моделей с распределенными лагами можно проводить согласно одному из двух методов методу Койка или методу Алмон.  [c.141]

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Процесс перехода к относительным величинам может быть осложнен выдвижением иных гипотез о пропорциональности ошибок относительно включенных в модель факторов. Например, lno2,.. = Ino2 + Ь пх + v, т. е. рассматривается характер взаимосвязи trie2, от lnx. Использование той или иной гипотезы предполагает специальные исследования остаточных величин для соответствующих регрессионных моделей. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.  [c.175]

Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК - предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК. При построении уравнения множественной регрессии по временным рядам данных, помимо двух вышеназванных проблем, возникает также проблема муль-тиколлинеарности факторов, входящих в уравнение регрессии, в случае если эти факторы содержат тенденцию.  [c.265]

Во-первых, текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом. Тем самым оценка параметров модели проводится в условиях высокой муль-тиколлинеарности факторов.  [c.295]

В-третьих, переменные z, которые определяются как линейные комбинации исходных переменных х, будут коррелировать между собой в случаях, когда наблюдается высокая связь между самими исходными переменными. Поэтому оценку параметров модели (7.15) приходится проводить в условиях мультиколлине-арности факторов. Однако мультиколлинеарностьфакторов ,,..., Zk в модели (7.15) сказывается на оценках параметров b0,..., bt в несколько меньшей степени, чем если бы эти оценки были получены путем применения обычного МНК непосредственно к модели (7.3) в условиях мультиколлинеарности факторов х ..., х, ,. Это связано с тем, что в модели (7.15) мультиколлинеарность ведет к снижению эффективности оценок с0,..., ск, поэтому каждый из параметров b0,..., bh которые определяются как линейные комбинации оценок с0,..., ск, будет представлять собой более точную  [c.301]

Впервые изложенный в этом разделе подход к оценке параметров моделей с распределенным лагом типа (7.16) был предложен Л.М. Койком. Койк предположил, что существует некоторый постоянный темп к (О < к < 1) уменьшения во времени лаговых воздействий фактора на результат. Если, например, в период / результат изменялся под воздействием изменения фактора в этот же период времени на Ьо ед., то под воздействием изменения фактора, имевшего место в период (t - 1), результат изменится на й0 к ед. в период (f — 2) — на Ьо к к = bQ к1 ед., и т. д. Для некоторого периода (t—l) это изменение результата составит bQ к ед. В более общем виде можно записать  [c.306]

Основное различие моделей (7.37) и (7.44) состоит в том, что модель (7.37) включает ожидаемые значения факторной переменной, которые нельзя получить эмпирическим путем. Поэтому статистические методы для оценки параметров модели (7.37) неприемлемы. Модель (7.44) включает только фактические значения переменных, поэтому ее параметры можно определять на основе имеющейся статистической информации с помощью стандартных статистических методов. Однако, как и в случае с моделью Кдфка, применение ОМНК для оценки параметров уравнения (7.44) привело бы к получению их смещенных оценок ввиду наличия в правой части модели лагового значения результативного признака у, (.  [c.321]

Динамические эконометрические модели. Модели с распределённым лагом. Изучение структуры лага и выбор вида модели с распределённым лагом лаги Алмон, метод Койка, метод главных компонент. Модели адаптивных ожиданий. Оценка параметров моделей авторегрессии. Прогнозирование на основе временных рядов. Тесты на устойчивасть тест Чоу, F-тест. Оценка качества прогнозов.  [c.4]