Оценка параметров моделей авторегрессии

В зависимости от способа определения ожидаемых значений показателей различают модели неполной корректировки, адаптивных ожиданий и рациональных ожиданий. Оценка параметров этих моделей сводится к оценке параметров моделей авторегрессии.  [c.290]


Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии существует определенная взаимосвязь, и в некоторых случаях необходимо осуществлять переход от одного типа моделей к другому.  [c.292]

ОЦЕНКА ПАРАМЕТРОВ МОДЕЛЕЙ АВТОРЕГРЕССИИ  [c.325]

Еще один метод, который можно применять для оценки параметров моделей авторегрессии типа (7.2), — это метод максимального правдоподобия, рассмотрение которого выходит за рамки данного учебника.  [c.327]


Другой недостаток моделей векторной авторегрессии — необходимость принятия решения относительно величины лага, адекватных методов оценки параметров модели, поскольку обычный МНК, как было показано выше, чаще всего неприменим при оценке параметров моделей с распределенным лагом и тем более неприменим для оценки параметров моделей авторегрессии. Поэтому методы оценки параметров моделей VAR очень громоздки, и в настоящее время далеко не все статистические пакеты прикладных программ имеют эту функцию. Однако в целом модели VAR потенциально значительно проще структурных моделей.  [c.332]

Изложите методику применения метода инструментальных переменных для оценки параметров модели авторегрессии.  [c.336]

Полученная модель есть модель двухфакторной линейной регрессии (точнее - авторегрессии). Определив ее параметры, мы найдем X и оценки параметров а п Ьо исходной модели. Далее с помощью соотношений (7.17) несложно определить параметры b, b2,... модели (7.16). Отметим, что применение обычного МНК к оценке параметров модели (7.22) приведет к получению смещенных оценок ее параметров ввиду наличия в этой модели в качестве фактора лаговой результативной переменной yt  [c.307]

Численно задачи оценивания неизвестных значений параметров моделей авторегрессии решаются с помощью стандартного аппарата метода наименьших квадратов (см. гл. 7—9). Более сложные проблемы возникают при исследовании статистических свойств получаемых оценок.  [c.370]

Оценки метода наименьших квадратов параметров модели авторегрессии в широком классе случаев (а именно при условии независимости, одинаковой распределенное и конечности дисперсий участвующих в них случайных возмущений е,, см. (12.2)) являются состоятельными. Асимптотические распределения оценок в устойчивом случае всегда являются нормальными, причем их дисперсия (ковариационная матрица) не зависит от дисперсии возмущений ег В общем случае (т. е. в ситуации, когда некоторые из корней характеристического уравнения (12.17) по модулю превосходят единицу) асимптотическое распределение оценок определяется распределением случайных возмущений е . Математическая модель авторегрессии /n-го порядка xt =  [c.371]


Параметры модели авторегрессии определяются по методу простой авторегрессии. Порядок авторегрессии определяется путем перебора, а его начальная оценка на основе анализа автокорреляционной функции. Лучшей считается величина с наименьшей дисперсией ошибок.  [c.73]

Отметим, что при соблюдении прочих предпосылок МНК автокорреляция остатков не влияет на свойства состоятельности и несмещенности оценок параметров уравнения регрессии обычным МНК, за исключением моделей авторегрессии. Применение МНК к моделям авторегрессии ведет к получению смещенных, несостоятельных и неэффективных оценок.  [c.280]

В зависимости от положенной в основу модели гипотезы о механизме формирования этих ожиданий различают модели адаптивных ожиданий, неполной корректировки и рациональных ожиданий. Поскольку эмпирические расчеты по моделям рациональных ожиданий достаточно сложные и требуют знания специальных методов математической статистики, рассмотрение которых выходит за рамки нашего учебника, подробнее остановимся на двух более простых моделяхадаптивных ожиданий и неполной корректировки — и покажем, что оценку параметров каждой из этих моделей можно проводить, используя обычную модель авторегрессии.  [c.319]

Первые две модели относятся к схеме скользящего среднего, последняя - к схеме авторегрессии. Многочисленные адаптивные методы, базирующиеся на этих моделях, различаются между собой способом числовой оценки параметров, определения параметров адаптации и компоновкой.  [c.72]

Динамические эконометрические модели. Модели с распределённым лагом. Изучение структуры лага и выбор вида модели с распределённым лагом лаги Алмон, метод Койка, метод главных компонент. Модели адаптивных ожиданий. Оценка параметров моделей авторегрессии. Прогнозирование на основе временных рядов. Тесты на устойчивасть тест Чоу, F-тест. Оценка качества прогнозов.  [c.4]

Вторая проблема состоит в том, что поскольку в модели авторегрессии в явном виде постулируется зависимость между текущими значениями результата. у, и текущими значениями остатков н очевидно, что между временными рядами у, и , , также существует взаимозависимость. Тем самым нарушается еще одна предпосылка МНК, а именно предпосылка об отсутствии связи между факторным признаком и остатками в уравнении регрессии. Поэтому применение обычного МНК для оценки параметров уравнения авторегрессии приводит к получению смещенной оценки параметра при переменной yt x.  [c.325]

В скобках указаны стандартные ошибки параметров уравнения регрессии. Применение метода инструментальных переменных привело к статистической незначимости параметра С[ = 0,109 при переменной yf . Это произошло ввиду высокой мультиколлинеарности факторов, иyt v. Несмотря на то что результаты, полученные обычным МНК, на первый взгляд лучше, чем результаты применения метода инструментальных переменных, результатам обычного МНК вряд ли можно доверять вследствие нарушения в данной модели его предпосылок. Поскольку ни один из методов не привел к получению достоверных результатов расчетов параметров, следует перейти к получению оценок параметров данной модели авторегрессии методом максимального правдоподобия.  [c.328]

Смотреть страницы где упоминается термин Оценка параметров моделей авторегрессии

: [c.327]