Смещение МНК-оценки

Границы смещения МНК-оценки для сг2, / 375  [c.375]

ГРАНИЦЫ СМЕЩЕНИЯ МНК-ОЦЕНКИ ДЛЯ <т2, I  [c.375]


ГРАНИЦЫ СМЕЩЕНИЯ МНК-ОЦЕНКИ ДЛЯ а2, II  [c.376]

Оценивание параметров уравнения регрессии в случае сильной мультиколлинеарности основано на различных методах регуляризации задачи — модификациях регрессии на главные компоненты, гребневых и редуцированных оценках. Со статистической точки зрения получаемые оценки являются, в отличие от мнк-оценок, смещенными. Однако они обладают рядом оптимальных свойств, в частности обеспечивают лучшие прогностические свойства оцененного уравнения регрессии на объектах, не вошедших в обучающую выборку.  [c.297]

Подчеркнем, что из представления (5.2) следует, что при наличии корреляции между X и е МНК-оценка будет, вообще говоря, смещенной и несостоятельной.  [c.153]

Следовательно, факт нулевого или ненулевого спроса на табак обусловлен ненаблюдаемым параметром е, описывающим потребительские предпочтения. Оценка зависимостей с подобными переключениями, которые обусловлены ненаблюдаемыми параметрами, обычно делается при помощи двухшаговых процедур, поскольку можно показать, что МНК - оценка в данном случае приведет к смещенным оценкам параметров функции спроса. Одной из наиболее известных подобных процедур является процедура  [c.158]


Использование МНК для оценивания структурных коэффициентов модели дает, как принято считать в теории, смещенные и несостоятельные оценки. Поэтому обычно для определения структурных коэффициентов модели структурная форма модели преобразуется в приведенную форму модели.  [c.182]

Отметим, что при соблюдении прочих предпосылок МНК автокорреляция остатков не влияет на свойства состоятельности и несмещенности оценок параметров уравнения регрессии обычным МНК, за исключением моделей авторегрессии. Применение МНК к моделям авторегрессии ведет к получению смещенных, несостоятельных и неэффективных оценок.  [c.280]

Полученная модель есть модель двухфакторной линейной регрессии (точнее - авторегрессии). Определив ее параметры, мы найдем X и оценки параметров а п Ьо исходной модели. Далее с помощью соотношений (7.17) несложно определить параметры b, b2,... модели (7.16). Отметим, что применение обычного МНК к оценке параметров модели (7.22) приведет к получению смещенных оценок ее параметров ввиду наличия в этой модели в качестве фактора лаговой результативной переменной yt  [c.307]

Однако, как было показано выше, оценка параметра с,, равная 0,440, является смещенной. Для получения несмещенных оценок параметров этого уравнения воспользуемся методом инструментальных переменных. Определим параметры уравнения регрессии (7.43) обычным МНК  [c.327]

Наиболее распространенные методы оценивания системы одновременных уравнений. Формальное применение мнк для получения оценок коэффициентов системы одновременных уравнений приводит, вообще говоря, к оценкам с плохими статистическими свойствами — смещенным и несостоятельным. Поэтому область его применения ограничена рекурсивными системами. Для оценивания параметров точно идентифицируемой системы можно применить косвенный метод наименьших квадратов, состоящий в оценивании обычным мнк коэффициентов приведенной формы и подстановке оценок в выра-  [c.414]


Последствия данной ошибки достаточно серьезны. Оценки, полученные с помощью МНК по уравнению (7.38), являются смещенными (M(go) Ф Ро> M(gi) Pi) и несостоятельными даже при бесконечно  [c.192]

При указанных выше проблемах оценки, полученные по МНК, являются смещенными и несостоятельными.  [c.281]

В этом случае оценки коэффициентов, полученные при прямом применении МНК, являются смещенными и несостоятельными.  [c.289]

Непосредственное использование МНК для оценки параметров каждого из уравнений регрессии, входящих в систему одновременных уравнений, в большинстве случаев приводит к неудовлетворительному результату. Чаще всего оценки получаются смещенными и несостоятельными, а статистические выводы по ним некорректными. Причины этого, а также возможные процедуры нахождения оценок параметров для систем одновременных уравнений анализируются в данной главе.  [c.308]

Применение обычного МНК к этому уравнению дает в общем случае смещенные оценки.  [c.48]

Показать, что обычный МНК, примененный к системе одновременных уравнений, дает в общем случае смещенные оценки.  [c.53]

Если выборка производится не из всей возможной совокупности наблюдений, а лишь из тех, что удовлетворяют каким-то априорным ограничениям, то такую выборку называют урезанной. Как правило, урезание приводит к смещенности МНК-оценок, поэтому для урезанных выборок используют в основном метод максимального правдоподобия (глава 10). В этом разделе мы рассмотрим случай, когда урезание осуществляется пороговым значением для зависимой переменной, т. е. исключаются все те наблюдения, у которых значение зависимой переменной меньше некоторой заданной величины.  [c.337]

Доказать смещенность МНК-оценок в случае наличия ошибок в независимых переменных.  [c.44]

В п. 5.1 при рассмотрении модели со стохастическими рагрессорами отмечалось, что при наличии корреляции между независимыми переменными и ошибками МНК-оценки могут быть смещенными и несостоятельными. Один из путей преодоления этой трудности — использование других независимых переменных, которые носят название инструментальные переменные. Как будет показано ниже, для получения состоятельных оценок надо, чтобы они обладали двумя свойствами  [c.212]

Если матрица ковариации ошибок по наблюдениям отлична от О IN (нарушена 3-я гипотеза основной модели), то МНК-оценки параметров регрессии остаются несмещенными, но перестают быть эффективными в классе линейных. Смещенными оказываются МНК-оценки их ковариции, в частности оценки их стандартных ошибок (как правило, они преуменьшаются).  [c.27]

Вследствие этого оценка параметров для линеаризуемых функций МНК оказываются несколько смещенной.  [c.75]

Наличие гетероскедастичности может в отдельных случаях привести к смещенности оценок коэффициентов рефессии, хотя несмещенность оценок коэффициентов рефессии в основном зависит от соблюдения второй предпосылки МНК, т. е. независимости остатков и величин факторов. Гетероскедастичность будет сказываться на уменьшении эффективности оценок bt. В частности, становится затруднительным использование формулы стандартной ошибки коэффициента рефессии ть., предполагающей единую дисперсию остатков для любых значений фактора. Практически при нарушении гомоскедастичности мы имеем неравенства  [c.164]

При сравнении результатов, полученных традиционным МНК и с помощью КМНК, следует иметь в виду, что традиционный МНК, применяемый к каждому уравнению структурной формы модели, взятому в отдельности, дает смещенные оценки структурных коэффициентов. Как показал Т. Хаавельмо, рассматривая две взаимосвязанные рефессии  [c.199]

Вторая проблема состоит в том, что поскольку в модели авторегрессии в явном виде постулируется зависимость между текущими значениями результата. у, и текущими значениями остатков н очевидно, что между временными рядами у, и , , также существует взаимозависимость. Тем самым нарушается еще одна предпосылка МНК, а именно предпосылка об отсутствии связи между факторным признаком и остатками в уравнении регрессии. Поэтому применение обычного МНК для оценки параметров уравнения авторегрессии приводит к получению смещенной оценки параметра при переменной yt x.  [c.325]

Уравнение (7.46) представляет собой модель с распределенным лагом, для которой не нарушаются предпосылки обычного МНК, приводящие к несостоятельности и смещенности оценок параметров. Определив параметры моделей (7.51) и (7.56), можно рассчитать параметры исходной модели (7.2) а, 40 и с,. Модель  [c.326]

Первая точка зрения исходит из того, что модель регрессии (8.1) является истинной, и несмещенная оценка коэффициентов регрессии получается мнк путем решения системы уравнений (8.3) (в условиях мультиколлинеарности эта оценка может быть неудовлетворительной, но тем не менее несмещенной). Тогда принудительное приравнивание части коэффициентов регрессионного уравнения к 0, что и происходит при отборе переменных, естественно, приводит, если матрица S недиаго-йальна, к смещенным оценкам коэффициентов при оставшихся переменных, т. е. мы приходим к классу смещенных оценок, рассмотренных в 8.3.  [c.281]

Ho yt i зависит от st-i, т. к. если (9.4) верно для t, то оно верно и для t - 1. Следовательно, имеется систематическая связь между одной из объясняющих переменных и одним из компонентов случайного члена. То есть не выполняется одна из основных предпосылок МНК (предпосылка 4 ) - объясняющие переменные не должны быть случайными (т. е. не иметь случайной составляющей). Значение любой объясняющей переменной должно быть экзогенным, полностью определенным. В противном случае оценки будут смещенными даже при больших объемах выборок.  [c.235]

Смещенность и несостоятельность оценок МНК для систем одновременных уравнений  [c.312]

При анализе временных рядов часто приходится учитывать статистическую зависимость наблюдений в разные моменты времени. Иными словами, для многих временных рядов предположение о некоррелированности ошибок не выполняется. В этом разделе мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка (точное определение будет дано ниже). Как было показано ранее (глава 5), применение обычного метода наименьших квадратов к этой системе дает несмещенные и состоятельные оценки параметров, однако можно показать (см., например, Johnston and DiNar-do, 1997), что получаемая при этом оценка дисперсии оказывается смещенной вниз, что может отрицательно сказаться при проверке гипотез о значимости коэффициентов. Образно говоря, МНК рисует более оптимистичную картину регрессии, чем есть на самом деле.  [c.184]

Матричное дифференциальное исчисление с приложениями к статистике и эконометрике (2002) -- [ c.375 ]