В эту группу входят методы анализа многофакторных зависимостей в условиях, когда факторы существенно коррелируют между собой. Дело в том, что практическое применение классических регрессионных моделей в экономическом анализе сопряжено с необходимостью преодоления ряда трудностей, основная из которых — мультиколлинеарность факторов. Особенность экономического анализа заключается в тесной взаимосвязи и взаимообусловленности показателей, поэтому бездумное и необоснованное включение в регрессионную модель бессистемно отобранных показателей нередко приводит к искусственности модели, невозможности ее использования на практике. Если пытаться следовать формальным требованиям регрессионного анализа в полном объеме, то, например, устранение мультиколлинеарности нередко сводится к отбрасыванию существенно коррелирующих факторов. В этом случае, во-первых, имеет место потеря информации и, во-вторых, анализ чаще всего выхолащивается, в некотором роде теряет смысл, поскольку модель сводится к одно- или двухфакторной. [c.128]
В главах 3,4 рассмотрены классические линейные регрессионные модели в главе 3 — парные регрессионные модели, на примере которых наиболее доступно и наглядно удается проследить базовые понятия регрессионного анализа, выяснить основные предпосылки классической модели, дать оценку ее параметров и геометрическую интерпретацию в главе 4 — обобщение [c.3]
Наиболее хорошо изучены линейные регрессионные модели, удовлетворяющие условиям (1.6), (1.7) и свойству постоянства дисперсии ошибок регрессии, — они называются классическими моделями. [c.19]
Подробному рассмотрению классической регрессионной модели посвящены гл. 3, 4 настоящего учебника. Практически весь последующий материал посвящен моделям, которые так или иначе могут быть сведены к классической. Часто раздел эконометрики, изучающий классические регрессионные модели, называется Эконометрикой-1 , в то время как курс Эконометрика-2 охватывает более сложные вопросы, связанные с временными рядами, а также более сложными, существенно нелинейными моделями. [c.19]
Полагая выполнение предпосылки 5 (с. 61) регрессионного анализа, т. е. нормальную классическую регрессионную модель (3.22), будем рассматривать значения у/ как независимые нормально распределенные случайные величины с математическим ожиданием М(у,-)=р0+Р,, -, являющимся функцией от х и постоянной дисперсией ст2. [c.63]
В предыдущих главах была изучена классическая линейная модель регрессии, приведена оценка параметров модели и проверка статистических гипотез о регрессии. Однако мы не касались некоторых проблем, связанных с практическим использованием модели множественной регрессии. К их числу относятся мультиколлинеарность, ее причины и методы устранения использование фиктивных переменных при включении в регрессионную модель качественных объясняющих переменных, линеаризация модели, вопросы частной корреляции между переменными. Изучению указанных проблем посвящена данная глава. [c.108]
В этой главе мы остановимся на некоторых общих понятиях и вопросах, связанных с временными рядами, использованием регрессионных моделей временных рядов для прогнозирования. При анализе точности этих моделей и определении интервальных ошибок прогноза на их основе, будем полагать, что рассматриваемые в главе регрессионные модели временных рядов удовлетворяют условиям классической модели. Модели временных рядов, в которых нарушены эти условия, будут рассмотрены в гл. 7, 8. [c.133]
В данной главе мы полагаем, что возмущения Е, (t= 1,..., л) удовлетворяют предпосылкам регрессионного анализа, т. е. условиям нормальной классической регрессионной модели ( 3.4). [c.145]
Следует отметить, что для обобщенной регрессионной модели, в отличие от классической, коэффициент детерминации, вычисленный по формуле (4.33 ) [c.154]
Предположим, что средние квадратические (стандартные) отклонения возмущений о, пропорциональны значениям объясняющей переменной X (это означает постоянство часто встречающегося на практике относительного (а не абсолютного, как в классической модели) разброса возмущений е, регрессионной модели. [c.159]
Использование традиционных регрессионных моделей (линейных при многомерном X и параболических в одномерном случае) в применении к относительно большим подобластям изменения регрессора позволяет сочетать простоту расчетов, свойственную классическим моделям регрессии, с эффективным использованием выборочной информации. Эти методы получили название локально параметрических. [c.335]
В пятой главе рассматриваются предпосылки классической линейной регрессионной модели, выполнимость которых обеспечивает получение качественных оценок параметров линейных уравнений регрессии на базе МНК. Приводится схема определения точности оценок коэффициентов регрессии. Анализируются прогнозные качества парной линейной регрессии. Описывается схема оценки общего качества уравнения регрессии с помощью коэффициента детерминации. [c.8]
В восьмой главе исследуются причины и последствия невыполнимости одной из фундаментальных предпосылок классической линейной регрессионной модели - предпосылки о постоянстве дисперсии отклонений (проблема гетероскедастичности). Приводятся способы обнаружения и смягчения последствий гетероскедастичности. [c.8]
Девятая глава затрагивает проблему автокорреляции остатков -невыполнимости еще одной предпосылки классической линейной регрессионной модели (отсутствия зависимости между случайными отклонениями). Описываются основные причины автокорреляции, способы ее обнаружения и устранения. [c.8]
Классическая линейная регрессионная модель. Предпосылки метода наименьших квадратов [c.112]
Наряду с выполнимостью указанных предпосылок при построении классических линейных регрессионных моделей делаются еще некоторые предположения. Например [c.115]
Прежде чем перейти к описанию алгоритма нахождения оценок коэффициентов регрессии, напомним о желательности выполнимости ряда предпосылок МНК, которые позволят проводить анализ в рамках классической линейной регрессионной модели. Эти предпосылки подробно обсуждались в разделе 5.1. Напомним ряд из них. [c.143]
Модель (7.5) является линейной моделью, подробно рассмотренной в гл. 4, 5. Если все необходимые предпосылки классической линейной регрессионной модели для (7.5) выполнены, то по МНК можно определить наилучшие линейные несмещенные оценки коэффициентов ро и р. [c.182]
Главы 2-4 содержат классическую теорию линейных регрессионных моделей. Этот материал является ядром эконометрики, и студенты должны хорошо освоить его перед тем, как перейти к изучению остальных частей книги. В главе 2 рассматривается простейшая модель с двумя регрессорами, глава 3 посвящена многомерным моделям. В определенном смысле глава 2 избыточна, однако с педагогической точки зрения крайне полезно изучить сначала регрессионные модели с двумя переменными. Тогда, например, можно обойтись без матричной алгебры, в двумерном случае легче также понять графическую интерпретацию регрессии. Глава 4 содержит несколько дополнительных разделов (проблема мультиколлинеарности, фиктивные переменные, спецификация модели), однако ее материал также можно отнести к стандартным основам эконометрики. [c.15]
По условиям классической нормальной регрессионной модели /а JV(0,/ i), таким образом, в силу свойства N8 (приложение МС, п. 4) [c.48]
Для обобщенной регрессионной модели, в отличие от классической, коэффициент детерминации [c.158]
Рассмотрим вначале классическую регрессионную модель [c.205]
Имеется у = Х(3 + е — классическая регрессионная модель (у — п х 1 вектор, X — п х k матрица, е — п х 1 вектор ошибок, (3 — k х 1 вектор коэффициентов, Ее = 0, V(e) = <72J). Пусть xn+i = (ZH+I.IJ i n+i.f ) дополнительное наблюдение независимых переменных и yn+i = х п+1(3 + .+ [c.211]
Предположим для примера, что анализируется влияние различных факторов на изменение производительности труда. Среди этих факторов — показатели, связанные с техническим обеспечением производственной деятельности, технологическим уровнем производства, уровнем организации производства, уровнем квалификационной и общеобразовательной подготовки работников и т.п. Все факторы влияют на изменение производительности труда, но вместе с тем они, без сомнения, не являются независимыми друг от друга. В рамках классического корреляционно-регрессионного анализа методом пошаговой регрессии можно отбросить коррелирующие и незначимые факторы, однако не исключено, что модель существенно упростится, причем значимые (по логике) направления (например, факторы, связанные с технологией производства) могут вообще быть не представлены в модели. [c.128]
При моделировании реальных экономических процессов мы нередко сталкиваемся с ситуациями, в которых условия классической линейной модели регрессии оказываются нарушенными. В частности, могут не выполняться предпосылки 3 и 4 регрессионного анализа (см. (3.24) и (3.25)) о том, что случайные возмущения (ошибки) модели имеют постоянную дисперсию и не коррелированы между собой. Для линейной множественной модели эти предпосылки означают (см. 4.2), что ковариационная матрица вектора возмущений (ошибок) е имеет вид [c.150]
Предложенные методы информационного моделирования технологических цепей и операций, реализованные в соответствующих методиках, не отличаются по форме от корреляционно-регрессионного анализа. Расчет и обоснование моделей проходят по классической схеме решение систем уравнений, оценка значимости коэффициентов, проверка идентичности модели. Типичными являются и задачи, решаемые с помощью моделей оценка взаимосвязей между параметрами ТП, выявление параметров, обладающих наибольшей нормативностью или влиятельностью на другие параметры, возможность расчета межоперационных допусков. Однако с позиций управления технологическими процессами информационные модели более просты, лаконичны и, следовательно, более приемлемы для целей управления. [c.92]
После проведения классического регрессионного анализа с отсевом незначимых факторов была получена модель у = 5607,4 + 63,74 1) + 48,65 <2> — 16,87 <3> (10.4) [c.322]
Заметим, что условиям классической регрессионной модели удовлетворяют и гомоскедастичная модель пространственной выборки, и модель временного ряда, наблюдения которого не коррелируют, а дисперсии постоянны. С математической точки зрения они действительно неразличимы (хотя могут значительно различаться экономические интерпретации полученных математических результатов). [c.19]
Простейшим примером стационарного временного ряда, у которого математическое ожидание равно нулю, а ошибки е/ некорре-лированы, является белый шум . Следовательно, можно сказать, что возмущения (ошибки) е, в классической линейной регрессионной модели образуют белый шум, а в случае их нормального распределения — нормальный (гауссовский) белый шум. [c.136]
Как уже отмечалось выше, равенство дисперсий возмущений (ошибок) регрессиии е/ (гомоскедастичность) является существенным условием линейной классической регрессионной модели множественной регрессии, записываемым в виде У е [c.155]
Как отмечалось в разделе 5.1, при рассмотрении классической линейной регрессионной модели МНК дает наилучшие линейные несмещенные оценки (BLUE-оценки) лишь при выполнении ряда предпосылок, одной из которых является постоянство дисперсии отклоне- [c.212]
Одним из условий классической регрессионной модели является предположение о линейной независимости объясняющих переменных, что означает линейную независимость столбцов матрицы регрессоров X или (эквивалентно) что матрица (Х Х) 1 имеет полный ранг k. При нарушении этого условия, т. е. когда один из столбцов матрицы X есть линейная комбинация остальных столбцов, говорят, что имеет место полная коллинеарность. В этой ситуации нельзя построить МНК-оценку параметра (3, что формально следует из сингулярности матрицы X X и невозможности решить нормальные уравнения. Нетрудно также понять и содержательный смысл этого явления. Рассмотрим следующий простой пример регрессии (Greene, 1997) С = fa + faS + foN + /34Т + е, где С — потребление, S — зарплата, N — доход, получаемый вне работы, Т — полный доход. Поскольку выполнено равенство Т = S + N, то для произвольного числа h исходную регрессию можно переписать в следующем виде С = (3i+/3 2S+/3 3iN+/3 4T-1r , где / 2 = 02 + h, /% = Рз + h, /3 4 = 04 — h. Таким образом, одни и те же наблюдения могут быть объяснены различными наборами коэффициентов /3. Эта ситуация тесно связана с проблемой идентифицируемости системы, о чем более подробно будет говориться позднее. Кроме того, если с учетом равенства Т — S + N переписать исходную систему в виде С = fa + (/% + 0 )S + (/Зз + /3 )N + е, то становится ясно, что оценить можно лишь три параметра fa, (Дз + Д ) и (/ 3 + /3[c.109]
Одно из предположений классической регрессионной модели состоит в том, что случайные ошибки некоррелированы между собой и имеют постоянную дисперсию. В тех случаях, когда наблюдаемые объекты достаточно однородны, не сильно отличаются друг от друга, такое допущение оправдано. Однако во многих ситуациях такое предположение нереалистично. Например, если исследуется зависимость расходов на питание в семье от ее общего дохода, то естественно ожидать, что разброс в данных будет выше для семей с более высоким доходом. Это означает, что дисперсии зависимых величин (а следовательно, и случайных ошибок) не постоянны. Это явление в эконометрике называется гетерос-кедастичностью (в отличие от гомоскедастичности — равенства дисперсий). Кроме того, при анализе временных рядов в довольно редких случаях можно считать, что наблюдения некоррелированы во времени. Как правило, значение исследуемой величины в текущий момент времени статистически зависит от ее значений в прошлом, что означает наличие корреляции между ошибками. Поэтому естественно изучать модели регрессии без предположения, что V(e) = и2/. [c.154]
Согласно результатам п. 3.2 для классической регрессионной модели av(yt, et) = 0, t = l,...,n, где у = (j/i,..., / ) = XpOLS — прогнозное значение у, е = (ei,..., е ) = у — у — вектор остатков. Сохраняется ли это свойство для обобщенной регрессионной модели (5.3), т. е. верно ли, что ov (у, е) = 0, где у = X oliS и е = у - у" [c.163]
В этом разделе мы рассмотрим частный случай обобщенной регрессионной модели, а именно, модель с гетероскедастичностъю, Это означает, что ошибки некоррелированы, но имеют непостоянные дисперсии. (Классическая модель с постоянными дисперсиями ошибок называется гомоскедастичной.) Как уже отмечалось, Гетероскедастичность довольно часто возникает, если анализируемые объекты, говоря нестрого, неоднородны. Например, если исследуется зависимость прибыли предприятия от каких-либо факторов, скажем, от размера основного фонда, то естественно ожидать, что для больших предприятий колебание прибыли будет выше, чем для малых. [c.168]
В этой модели условная дисперсия ошибок зависит от времени V(u( u( i) — E(u( ut i) — о + i t-i, в то время как безусловная дисперсия ошибок не зависит от времени V(ut) = V(ii( i) = ао/(1 — i). Таким образом, модель (11.113) удовлетворяет всем условиям классической линейной регрессионной модели и МНК-оценки являются наиболее эффективными линейными оценками. [c.312]
Чтобы понять сущность нечеткой регрессионной модели, рассмотрим классический пример — линейную регрессионную треугольную модель. Предположим, что имеется ряд факторов Л , ,, ..,хи, определяющих результативный показатель К,атакже выборки данных из т наблюдений о значении факторов и исследуемого результата, которые могут быть четкими, как в случае традиционного регрессионного анализа, и размытыми (например, многовариантными экспертными оценками). Требуется определить такую функцию F(xt,x2,. ..,хп) = а]х] + а-р2 + — +atlxn + a()> где йо- ai> a2 - ап нечеткие симметричные доверительные тройки, которая бы наиболее точно описывала значения результативного показателя. [c.260]
Рассмотрим пример применения сетей к анализу классического временного ряда— ряда данных о пятнах на Солнце. Регулярные ежегодные записи этого явления ведутся с 1700 года. Ряд много раз анализировался в статистической литературе, и выяснилось, что он не является ни стационарным, ни линейным, ни гауссовым. Были испробованы различные одномерные методы моделирования временных рядов. Габр и Рао [119] применяли авторегрессионную модель 9-го порядка (с 4 ненулевыми коэффициентами) и билинейную модель. Льюис и Стивене [179] разработали модель на основе метода многомерных адаптивных регрессионных сплайнов (MARS), а Пристли [221] исследовал модель TAR. В последнее время несколько групп исследователей предприняли попытки проделать анализ ряда с помощью нейронно-сетевого подхода (см. [275], [170], [84]). Результаты, полученные различными методами, собраны в табл. 2.2. [c.67]
Классический эвристический подход представлен методом управляющих коэффициентов Боумана. Этот уникальный подход создает формализованную модель принятия решений на основе опыта и интуиции менеджера. Теоретически принимается, что прошлые представления менеджера достаточно адекватны, и они могут быть использованы как базис для будущих решений. Проводится регрессионный анализ решений прошлого периода, принятых менеджером, и прогнозируется будущее решение. Линия регрессии обеспечивает связь между переменными (скажем, спросом и трудом) для будущих периодов. [c.537]
Экономико-математические модели. Если говорить о нормативном методе расчета потребностей, будь то метод прямого счета по отдельным составляющим элементам процесса или по всей технологической цепочке, или о регрессионных, эконометрических методах, то можно отметить, что они с разной степенью комплексности отражают аспекты опредеяения отраслевых потребностей. Наряду с указанным отраслевым направлением определения потребности целесообразно решать задачи межотраслевых взаимодействий в процессе потребления ТЭР, согласования ресурсного и спросо-вого разделов экономики. Такой подход к определению потребности с различной степенью детализации учета реальных условий осуществляется путем построения соответствующих экономико-математических моделей — моделей межотраслевого баланса (МОБ). Их недостаток — сильная агрегированность. Некоторой подправкой модели МОБ с целью уменьшения агрегированности является разработанная в ЦЭМИ АН СССР модель межотраслевых взаимодействий [117], в которой наряду с классическими уравнениями модели МОБ предлагаются регрессионные уравнения, где связь отдельных двух отраслей (поток продукции одной отрасли в другую) выражается через аналогичную взаимосвязь их с сопряженными отраслями, выражая присущие сдвиги в структуре, ассортименте и т. д. В этой работе [117] приводятся, в частности, взаимосвязи энергетических отраслей с другими отраслями народного хозяйства. Указанное сочетание регрессионных уравнений, описывающих состояние отдельных отраслей, с регрессионными уравнениями, отражающими взаимосвязи отраслей, позволит углубить решение вопроса определения потребностей в ТЭР. [c.123]