Таким образом, на этапе декомпозиции временного ряда на составляющие динамики в реальных (т. е. нетривиальных) ситуациях зачастую существует некоторый произвол в том, какие вариации отнести к компоненте тренда и конъюнктуры, какие - к сезонной, а какие - к нерегулярной составляющей динамики. Более того, как было показано выше, иногда корректное разделение сделать принципиально невозможно. [c.75]
Рис. 5.2. Иллюстрация эффекта резкого увеличения масштаба календарной, сезонной и нерегулярной составляющих динамики при переходе от базисной формы представления показателя (а) к цепной (б) |
Как было показано выше, разные формы представления данных экономической динамики привносят разные лаги. Это приводит к тому, что осознание произошедшего изменения ситуации в экономике происходит с запаздыванием, причем запаздывание является различным для разных переменных. Так, показатели динамики количеств в российской переходной экономике можно рассматривать как медленные переменные. Они же являются переменными типа потока, которые, в отличие от переменных типа запаса, подвержены значительному воздействию календарного и сезонного факторов, что делает уровни соответствующих временных рядов несопоставимыми друг с другом. Традиционным приемом, с помощью которого пытаются достичь сопоставимости, является использование суррогатных индикаторов, рассмотренных выше, что вкупе с их неадекватной интерпретацией приводит к идентификации поворотных точек со значительными лагами. По нашему мнению, основанному на многолетних наблюдениях, смены тенденций таких показателей в первые годы реформ воспринимались руководством государства с лагом примерно в девять месяцев. В последние годы он значительно сократился. Ценовые же показатели, напротив, можно рассматривать как быстрые переменные. Они же являются переменными типа запаса, слабо подверженными воздействию календарного и сезонного факторов, поэтому уровни соответствующих временных рядов почти (с точностью до нерегулярной составляющей динамики) сопоставимы друг с другом. Поэтому осознание произошедших изменений тенденции таких показателей наступает гораздо быстрее, месяца за два. Кроме [c.91]
Заметим, что использованный в данном примере временной ряд добычи нефти не вполне типичен, поскольку изменения его уровней от месяца к месяцу определяются в основном календарной составляющей, тогда как остальные составляющие динамики либо крайне слабо выражены (сезонная и нерегулярная), либо изменяются очень плавно (компонента тренда и конъюнктуры). Чаще бывает, что календарная составляющая не доминирует, а лишь привносит характерные высокочастотные флуктуации в динамику показателя, накладываясь на прочие составляющие. [c.15]
Ниже до конца раздела 2.2.5 исходный временной ряд будем рассматривать как совокупность четырех составляющих динамики календарной, сезонной, нерегулярной и компоненты тренда и конъюнктуры. Пусть t - время, а х,, С,, S,, I, и Т, - уровни исходного ряда и его календарной, сезонной, нерегулярной и трендовой составляющих периода t соответственно. Обычно календарную составляющую считают мультипликативной, т. е. исходный ряд представляют в виде [c.16]
Для идентификации сезонной составляющей из совокупности сезонной, нерегулярной и трендовой составляющих необходимо привлечение дополнительной информации о виде функции F(-) в (2.1) и о свойствах составляющих динамики. [c.21]
Заметим, что выделение трендовой составляющей динамики из совокупности сезонной, нерегулярной и трендовой составляющих не обязательно включает два описанных шага (сначала удаление сезонной составляю- [c.26]
В значительной мере это обусловлено организацией деятельности национальных статистических служб. Макроэкономические показатели строятся, как правило, в месячном, квартальном и годовом выражениях. За отдельными исключениями (к числу которых относятся, например, временные ряды обменных курсов валют и других показателей финансовых рынков), макроэкономические показатели рассчитываются с шагом по времени не меньше месяца. Это обусловлено, в частности, технологическими соображениями, поскольку регистрация, сбор и первичная обработка данных требуют некоторого времени и значительных ресурсов. При этом методики построения одних и тех же показателей в месячном, квартальном и годовом выражениях зачастую несколько различаются. Как правило, чем выше частота временного ряда показателя, тем на меньший объем исходных данных он опирается (скажем, при построении показателей в годовом выражении часто бывает доступен больший объем более качественной исходной информации, чем при построении показателей в месячном выражении). Вместе с тем показатели более высокой частоты строятся и публикуются более оперативно и позволяют анализировать более краткосрочные тенденции, чем показатели меньшей частоты. Поэтому имеются основания строить и использовать показатели разной частоты. Годовые данные, как правило, наиболее точны, но не содержат информации о краткосрочных тенденциях, а соответствующие им временные ряды содержат наименьшее количество членов. Месячные данные зачастую менее точны, зато содержат информацию о краткосрочных тенденциях, соответствующие временные ряды имеют существенно большее количество членов, однако уровни таких рядов, как правило, несопоставимы между собой в силу наличия календарной и сезонной составляющих и большего масштаба нерегулярной составляющей. Удаление неинформативных составляющих динамики приводит к уменьшению числа степеней свободы, особенно заметному при использовании адаптивных методов, настраивающихся на эволюцию составляющих динамики. [c.39]
Высокая интенсивность изменений в российской переходной экономике приводит к тому, что все составляющие динамики экономических временных рядов могут быть подвержены быстрой эволюции. Для компоненты тренда и конъюнктуры это выражается в высоких темпах спада или роста (неестественно больших с точки зрения стабильных экономик, рис. 4.1), для сезонной составляющей - в интенсивной эволюции как ее амплитуды, так и структуры [52], для нерегулярной составляющей - в непостоянстве масштаба (рис. 2.6,а) и в наличии выбросов, и даже календарная составляющая может значительно эволюционировать в силу изменения состава праздников и правил переноса праздничных дней, совпадающих с выходными. Может присутствовать и значительная событийная составляющая (как в рассмотренном выше примере с производством водки и ликеро-водочных изделий в России, рис. 2.8,6). [c.64]
Иллюстрации эффекта "виляния хвостом" приведены на рис. 4.12. На рис. 4.12, а дан простейший пример с использованием искусственно сконструированного временного ряда х, = (-1), который можно рассматривать как совокупность (сумму) двух составляющих динамики - трендовой Т, = 0 и нерегулярной /, = (- ). В данном случае "виляние хвостом" обусловлено лишь краевыми эффектами использованного метода сглаживания. На рис. 4.12,6 приведен менее тривиальный пример, в котором использованы реальные данные - оценки компонент тренда и конъюнктуры индексов промышленного производства Центра экономической конъюнктуры при Правительстве РФ. Здесь "виляние хвостом" обусловлено целым рядом причин. Во-первых, краевым эффектом метода сезонной корректировки. Во-вторых, краевым эффектом метода сглаживания, позволяющего отделить компоненту тренда и конъюнктуры от нерегулярной составляющей. В-третьих, исходные данные о производстве отдельных видов промышленной продукции, по которым строится этот индекс, подвержены уточнениям, интенсивность которых затухает по мере удаления от актуального конца. Эти уточнения также вносят свой вклад в эффект "виляния хвостом". [c.73]
Возможность интенсивной эволюции сезонных волн приводит к тому, что иногда бывает невозможно корректно отделить эволюцию сезонной составляющей от изменений компоненты тренда и конъюнктуры и нерегулярной составляющей. Например, резкое падение добычи газа в середине 1993 г. (рис. 4.7,а) можно было объяснять и эволюцией сезонной волны, и изменением компоненты тренда и конъюнктуры, и выбросом. Дальнейшее развитие событий показало, что в данном случае имело место резкое изменение амплитуды сезонных колебаний, однако в первые месяцы после аномально глубокого падения добычи газа в середине 1993 г. определенную трактовку на основании анализа лишь информации, содержащейся в анализируемом временном ряде, дать было нельзя. Похожая ситуация сложилась и в середине 1997 г., однако в данном случае дальнейшее развитие событий показало, что здесь, напротив, едва ли можно было говорить об эволюции сезонной составляющей, скорее имело место временное снижение компоненты тренда и конъюнктуры (которое можно включить и в состав событийной составляющей динамики). На рис. 4.6-4.9 можно найти немало других подобных примеров потенциальной неоднозначности в трактовке динамики показателей. [c.75]
Ниже приводится описание метода, позволяющего проводить декомпозицию экономического временного ряда на три составляющих динамики -компоненту тренда и конъюнктуры, сезонную и нерегулярную составляющие. Метод был разработан и реализован автором в начале 1990-х гг. и с тех пор находится в интенсивной эксплуатации. В частности, этот метод более десяти лет используется при построении индексов промышленного производства Центра экономической конъюнктуры при Правительстве РФ. [c.222]
При использовании примитивных методов календарной корректировки неудаленный остаток календарной составляющей отчасти попадет (просочится) в оценку сезонной составляющей и может быть элиминирован вместе с ней, а отчасти попадет в оценку нерегулярной составляющей динамики, что снизит точность идентификации компоненты тренда и конъюнктуры. [c.18]
Заметим, что в работах, посвященных декомпозиции экономических временных рядов, обсуждаемую составляющую динамики, как правило, называют нерегулярной (irregular), а не случайной (random). Первый термин, в отличие от второго, не предполагает непременно стохастической трактовки данной составляющей. Это связано, в частности, с тем, что нерегулярная составляющая динамики может включать в себя выбросы и другие особенности (они обсуждаются ниже в разделе 2.2.7), не имеющие случайной природы. [c.25]
То, что остается после элиминирования календарной, сезонной и нерегулярной составляющих, называют компонентой тренда и конъюнктуры (синонимы - трендовая составляющая динамики, trend- y le omponent). Она определяет тенденцию изменения уровней временного ряда, не искаженных календарными, сезонными и нерегулярными эффектами. Чаще всего именно она рассматривается как информативная в задачах анализа экономической динамики, тогда как календарная, сезонная и нерегулярная составляющие динамики обычно рассматриваются как неинформативные. [c.26]
Заметим, что такая эволюция сезонных волн находится в полном согласии с концепцией Я. Корнай [18], согласно которой рыночная экономика является экономикой со спросовыми ограничениями, а плановая - с ресурсными. При переходе от плановой экономики к рыночной происходит смена типа доминирующих ограничений, одним из следствий которой и является эволюция сезонных волн. Это позволяет говорить об эффекте трансформационной эволюции сезонных волн, одна из причин которого состоит в смене типа доминирующих ограничений в экономике. Другая причина возникновения этого эффекта состоит в том, что масштаб флуктуации в системе в период снижения ее устойчивости возрастает, в результате первая фаза переходного периода, на которой доминируют тенденции спада, характеризуется в целом увеличением размаха сезонных волн, а вторая фаза, на которой доминируют тенденции роста, характеризуется в целом уменьшением их размаха. То же относится и к эволюции масштаба нерегулярной составляющей динамики, иллюстрацию чего дает/шс. 2.6,а. [c.68]
Если исходный временной ряд рассматривается как совокупность календарной, сезонной, нерегулярной и трендовой составляющих динамики, то после проведения календарной и сезонной корректировок для завершения декомпозиции экономического временного ряда остается отделить трендовую составляющую от нерегулярной. Для этого обычно предполагают, что трендовая составляющая является в некотором смысле гладкой, что оправдывает применение методов сглаживания (smoothing) для ее идентификации (см., например, [12-15]). Получающийся в результате календарной и сезонной корректировок и сглаживания временной ряд можно рассматривать как оценку компоненты тренда и конъюнктуры исходного ряда. [c.25]
Помимо протяженных во времени флуктуации, подобных показанным на рис. 2.8 и рис. 2.9, к событийной составляющей динамики могут быть отнесены и выбросы (outliers), т. е. резкие отклонения от тенденции (в смысле значительного превышения масштаба нерегулярной составляющей в окрестности соответствующего периода), наблюдающиеся на протяжении лишь одного периода или группы изолированных периодов. [c.30]
Совокупность всех составляющих динамики, за исключением нерегулярной (и, возможно, событийной), будем называть также регулярной составляющей динамики (regular omponent). Заметим, что "регулярность" не обязательно означает "гладкость". Так, календарная составляющая динами- [c.31]
Для иллюстрации решения задачи идентификации текущей ситуации на рис. 3.1 использованы данные помесячной динамики российского экспорта в стоимостном выражении в долларах США по текущему курсу с начала 1998 г. по июль 2002г. Исходный ряд не дает сопоставимой оценки, поскольку данные зашумлены календарной, сезонной и нерегулярной составляющими, которые в этом случае не являются информативными. Компонента тренда и конъюнктуры, являющаяся информативной для решаемой задачи, демонстрирует периоды спада и подъема, разделенные поворотными точками. В окрестности актуального конца временного ряда показана область краевых эффектов, интерпретация уровней компоненты тренда и конъюнктуры в которой требует особой осторожности. [c.45]
Для проведения сезонной корректировки полученную оценку сезонной составляющей динамики следует удалить из исходного временного ряда (рис. П7). Результирующий ряд соответствует совокупности компоненты тренда и конъюнктуры и нерегулярной составляющей. Результат его сглаживания можно рассматривать в качестве компоненты тренда и конъюнк- [c.227]