Если при рассмотрении описанных выше функций интересуются их значениями при фиксированных величинах одной или нескольких СВ, то эти функции обычно усредняются (суммируются или интегрируются) по лишним переменным. В результате получаются так называемые маргинальные (предельные) вероятности, функции распределения и плотности вероятности. Например [c.34]
Совместная вероятность, совместная функция распределения, совместная плотность вероятности не дают ясного представления о поведении каждой из компонент рассматриваемой СВ и их взаимосвязи друг с другом. В этом случае могут быть построены законы распределений каждой из составляющих многомерной СВ. При этом каждая из них принимает те же значения, но с соответствующими маргинальными вероятностями либо маргинальными функциями распределения, рассчитываемыми по формулам (1.23), (1.24). Например, двумерная дискретная СВ (X, Y) может быть задана в табличной форме [c.35]
Пусть /(ж, у) есть плотность совместного распределения двух случайных величин х и у, a fx(x) и fy(y) — маргинальные плотности х и у соответственно. Тогда говорят, что х и у (стохастически) независимы, если [c.313]