Выше были показаны способы применения простейших случайных потоков событий. Как правило, такие потоки должны обладать свойствами стационарности, у них отсутствует последействие и однородность. Если выполнить все эти условия, то имитационное моделирование СМО в отличие от аналитического решения сможет дать дополнительно только значения качественных параметров в переходном процессе, т.е. в начальный период функционирования СМО. Установившиеся значения с точностью до инструментальной ошибки должны быть одинаковы. [c.238]
При исследовании непрерывных марковских цепей, как было уже отмечено, часто бывает удобно представить переход системы из состояния в состояние как воздействие каких-то потоков событий (поток заявок на обслуживание, поток автомобилей, поток документов и т. п.). Различают следующие основные свойства, которыми могут обладать случайные потоки событий [c.53]
Способов получения простейших случайных потоков однородных событий, обладающих свойствами стационарности при отсутствии последействия, достаточно много, как и литературы по этому поводу, например работы [19, 43, 37]. Вместе с тем можно утверждать, что применение простейших потоков случайных событий при аналитическом или имитационном моделировании на основе СМО сложных экономических объектов неэффективно и, как правило, создает ошибочное представление о качестве функционирования объекта. [c.239]
Закон распределения случайной величины, обладающей следующим свойством промежутки времени между любыми двумя соседними событиями и его среднее квадратическое отклонение равны 1/Х, где — интенсивность потока, являющегося экспоненциальным, или показательным. [c.177]