Кластерный анализ расстояние

Метод кластерного анализа позволяет строить классификацию объектов посредством объединения их в группы, или кластеры, на основе критерия минимума расстояния в пространстве т показателей, описывающих объекты. Вероятностное обоснование результатов кластеризации можно получить методом дискриминантного анализа.  [c.95]


Каждая единица совокупности в кластерном анализе рассматривается как точка в заданном признаковом пространстве. Значение каждого из признаков у данной единицы служит ее координатой в этом пространстве по аналогии с координатами точки в нашем реальном трехмерном пространстве. Таким образом, признаковое пространство - это область варьирования всех признаков совокупности изучаемых явлений. Если мы уподобим это пространство обычному пространству, имеющему евклидову метрику, то тем самым мы получим возможность измерять расстояния между точками признакового пространства. Эти расстояния называют евклидовыми. Их вычисляют по тем же правилам, как и в обычной евклидовой геометрии. На плоскости, т.е. в двухмерном пространстве, расстояние между точками А и В равно корню квадратному из суммы квадратов разностей координат этих точек по оси абсцисс и по оси ординат - на основании теоремы Пифагора (рис. 6.1).  [c.136]

Рассмотренная выше методика вычисления евклидова расстояния предполагает, что все признаки считаются равноправными. На самом же деле при выделении типов социально-экономических явлений группировочные признаки не равноправны как правило, одни признаки имеют большее, другие — меньшее значение. Следовательно, более совершенная методика кластерного анализа должна учитывать разную значимость, разный вес группировочных признаков. В этом случае должно использоваться взвешенное евклидово расстояние  [c.146]


Кластерный анализ проводится с использованием таких количественных характеристик, как мода распределения, дисперсия, расстояние, а также качественной информации, которой обладает ЛПР.  [c.205]

Кластерный анализ - один из методов многомерного анализа, предназначенный для группировки (кластеризации) совокупности, элементы которой характеризуются многими признаками. Значения каждого из признаков служат координатами каждой единицы изучаемой совокупности в многомерном пространстве признаков. Каждое наблюдение, характеризующееся значениями нескольких показателей, можно представить как точку в пространстве этих показателей, значения которых рассматриваются как координаты в многомерном пространстве. Расстояние между точками р и q с k координатами определяется как  [c.105]

Метод кластерного анализа, позволяющий строить классификацию нескольких объектов посредством объединения их в группы, или кластеры, на основе критерия минимума расстояния в пространстве определенных показателей, описывающих объекты, а также классификацию объектов на заданное число групп — кластеров. Вероятностное обоснование результатов кластеризации можно получить методом дискриминантного анализа.  [c.17]

В рамках кластерного анализа на основе численно выраженных параметров объектов вычисляются расстояния между ними, которые могут выражаться как в евклидовой метрике, так и в других, более сложных метриках. Кластерный анализ — это наиболее часто используемый метод сегментации рынка. Внутренние определения процедур кластерного анализа отражают цели сегментации рынка. Требуется определить группы респондентов так, чтобы минимизировать различия между членами каждой группы, в то же время максимизировать различия между членами одной группы и теми, кто к ней не принадлежит.  [c.80]


На этом принципе построено довольно много методов обобщения понятий, которые можно было бы назвать методами разделения в пространстве признаков. В простейшем случае ситуация, показанная на рис. 4.1, обобщается на пространство произвольной размерности и строятся методы выделения наиболее крупных скоплений объектов, для которых расстояния между признаками значительно меньше расстояний между отдельными скоплениями. На этой идее основано большинство методов, развиваемых в рамках кластерного анализа.  [c.168]

Объяснять ход выполнения кластерного анализа, включая формулирование выбор способа измерения расстояния, выбор метода кластеризации, принятие решения о числе кластеров, и профилирование кластеров.  [c.747]

Выполняйте кластерный анализ на основании одних и тех же данных, но с использованием различных способов измерения расстояния. Сравните результаты, полученные на основе разных мер чтобы определить, насколько совпадают полученные результаты.  [c.763]

Иногда кластерный анализ используют для кластеризации переменных, чтобы определить однородные (гомогенные) группы. В этом случае элементами, используемыми для анализа, будут переменные, и меры расстояния вычисляют для всех пар переменных. Например, коэффициент корреляции либо по абсолютной величине, либо с присущим ему знаком можно использовать как меру сходства (в противоположность расстоянию) между переменными.  [c.767]

Промежуточным результатом анализа являются среднее внутри-кластерное расстояние, по которому можно сравнивать различные варианты кластеризации, и кластеры с указанием включенных в них объектов. При этом можно получить проекции на плоскость каждой пары показателей центров кластеров и объектов каждого кластера, соединенных линиями с центрами.  [c.96]

Учитывая во многом субъективный (экспертный) принцип заполнения клеток матрицы и соответственно разбиения товаров на группы, дополнительно было проведено выделение сходных совокупностей лесных товаров с применением кластерного анализа. Расчет проводился с использованием статистического пакета Mi rosoft Slaiisti a 4-3- При формировании пяти кластеров на основе минимизации евклидовых расстояний в пространстве двух признаков — средней доли товара в совокупной стоимости экспорта лесных товаров в 1991—1995 гг- и среднего темпа прироста мирового экспорта товара за эти годы были получены следующие результаты  [c.203]

КЛАСТЕРНЫЙ АНАЛИЗ ( luster analysis) -совокупность матем методов, предназначенных для формирования групп объектов (кластеров) по информации о расстояниях или связях (мерах близости) между ними Используется для анализа структуры совокупностей экон показателей по заданной матрице коэф корреляции между ними Можно выделить два осн типа методов К а в зависимости от того, одновременно или последовательно отыскиваются кластеры Среди первых широкое распространение получили т н вариационные методы, основанные на оптимизации того или иного показателя качества кластерной структуры, и агломеративные методы, основанные на последовательном объединении пар наиболее близких кластеров Среди вторых можно отметить методы, основанные на явном определении понятия кластера, как правило, в терминах максимально допустимого "радиуса" или "порога существенности" связей Ал-  [c.94]

Большинство методов кластеризации (иерархической группировки) являются агломеративными (объединительными) - они начинают с создания элементарных кластеров, каждый из которых состоит ровно из одного исходного наблюдения (одной точки), а на каждом последующем шаге происходит объединение двух наиболее близких кластеров в один. Момент остановки этого процесса может задаваться экспертом (например, указанием требуемого числа кластеров или,максимального расстояния, при котором допустимо объединение). Графическое изображение процесса объединения кластеров может быть получено с помощью дендрограммы - дерева объединения кластеров. Другие методы кластерного анализа являются дивидивными (разделительными) - с их помощью пытаются разбивать объекты на кластеры непосредственно.  [c.282]

Многомерное шкалирование похоже на кластерный анализ, поскольку тоже включает ряд методик, направленных на одну проблему, в данном случае на составление карт восприятия клиентами предложений на рынке. Рисунок 4 показывает типичную карту, изготовленную с помощью этого метода на основе информации по тематическим паркам отдыха. На этом рисунке пространство — не географическое расстояние между парками, а психологическое пространство. Карта показывает, насколько близко клиент видит центры отдыха в своем сознании, и параметры, которые он применяет. Помимо визуализации рынка карты, произведенные с помощью многомерного шкалирования, могут помочь позициони-  [c.109]

Для группирования респондентов на основе ихна вопросы, касающиеся выбора больницы, использовали метод кластеризации, минимизирующий дисперсию, который выполнили с помощью программы Qui k luster (программный пакет SPSS). Минимизировали квадраты евклидовых расстояний между всеми в основе кластеризации. Поскольку разные респонденты воспринимали шкалы важности по-разному, перед кластеризацией персональные рейтинги нормировали. Результаты показали, что респондентов наилучшим образом можно классифицировать на четыре кластера. Достоверность результатов кластерного анализа проверили методом перекрестной проверки двух половинок общей выборки.  [c.767]

Смотреть страницы где упоминается термин Кластерный анализ расстояние

: [c.32]    [c.109]   
Маркетинговые исследования Издание 3 (2002) -- [ c.0 ]