Учитывая сделанное замечание, читатель может использовать для приближенного решения трех основных задач оценки точности нелинейной регрессионной модели соотношения (11.16), (11.18 ) и (11.19) предыдущего параграфа с заменой [c.355]
Решение основных задач по оценке точности нелинейной регрессионной модели. Подчеркнем два главных отличия данного случая от линейного, рассмотренного в 11.1. Во-первых, используемые для построения доверительных интервалов свойства состоятельных мнк-оценок 0 — несмещенность, оптимальность, нормальность, а также свойства б), в) и г) из п. 11.1.1 справедливы лишь в асимптотическом (по п-+- оо) смысле. Во-вторых, следует учитывать приближенный характер базовых соотношений (11.24) и соответственно (11.25) и (11.26). Следует признать, что возможны различные уточнения описываемого здесь приближенного подхода [1611. Однако вряд ли они существенно усовершенствуют предлагаемые в данном параграфе практические рекомендации ведь даже так называемые точные критерии и доверительные интервалы на практике оказываются всего лишь приближенными (они точны лишь в той мере, в какой соблюдаются в реальной ситуации те идеализированные допущения, на которых строятся соответствующие статистические выводы). Поэтому, говоря о том, что интересующая нас погрешность не превзойдет определенной величины с доверительной вероятностью, например, равной 0,95, мы должны всегда отдавать себе отчет в приближенном характере подобных заключений. [c.355]