Конечномерные и бесконечномерные векторные пространства. Эквивалентные определения базиса. Равномощность любых двух базисов пространства размерность пространства. Возможность расширить до базиса любую линейно независимую систему векторов. Единственность разложения по базису и координаты векторов. Соответствие между действиями с векторами и со столбцами их координат. [c.10]
РАЗМЕРНОСТЬ ВЕКТОРНОГО ПРОСТРАНСТВА [dimensionality of ve tor-spa e] — максимальное число линейно-независимых векторов в векторном (линейном) пространстве (см. Линейная зависимость векторов). Если это число конечно, то пространство называется конечномерным (многомерным). В противном случае — бесконечномерным. Пример конечномерного векторного пространства — множество возможных планов цеха из ст. "Вектор". Размерность этого пространства равна 4. Точки на прямой действительных чисел образуют одномерное пространство. [c.298]