Симплексный метод максимизация при ограничениях со знаком < [c.279]
Симплексный метод, максимизация 279—284 [c.421]
На предыдущих примерах мы рассмотрели симплексный метод решения задач по максимизации объективной функции при ограничениях со знаком < , например х < 250 и Зх + 2у < 3000. В этом разделе мы рассмотрим задачу минимизации объективной функции при ограничениях со знаком > . Это применимо в ситуациях, когда мы хотим минимизировать издержки производства за счет более жестких ограничений по использованию рабочего времени, людских и материальных ресурсов, а также машинного времени. [c.285]
В этой главе мы рассмотрели приемы линейного программирования при решении задач оптимизации. Типичный пример — максимизация прибыли предприятия за счет определения соответствующей номенклатуры производства. Кроме того, задачи линейного программирования могут быть направлены на минимизацию переменных, в частности затрат. Выражение, которое необходимо оптимизировать, называется объективной функцией. Эта функция высчитывается при наличии ряда ограничений. Одна из самых больших трудностей при решении такого рода задач состоит в исходной постановке задачи, когда необходимо определить ограничения, представить их в виде неравенств и выдать выражение объективной функции. При решении простых задач только с двумя переменными можно применить графический метод. Для более сложных задач применяется симплексный метод. [c.304]