Изучение взаимосвязей по временным рядам

При работе с временными рядами разных показателей и при изучении взаимосвязей между ними довольно быстро были осознаны проблема ложной корреляции и проблема лага, т. е. сдвига во времени, который позволял уловить наличие связи между показателями (ВВП и инвестициями, приемом на учебу и выпуском из учебных заведений и т. д.).  [c.19]


Численные значения ошибки приведены в гр. 7 табл. 5.14. Если временной ряд ошибок не содержит автокорреляции, его можно использовать вместо исходного ряда для изучения его взаимосвязи с другими временными рядами. Для того чтобы сравнить мультипликативную модель и другие модели временного ряда, можно по аналогии с аддитивной моделью использовать сумму квадратов абсолютных ошибок. Абсолютные ошибки в мультипликативной модели определяются как  [c.250]

Анализ взаимосвязанных рядов представляет наибольшую сложность при изучении временных последовательностей. Нередко совпадение общих тенденций развития бывает вызвано не взаимной связью, а прочими неучитываемыми факторами. Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций, а после этого провести анализ взаимосвязи по отклонениям от тренда. Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление взаимосвязи между признаками.  [c.109]


Выявление и устранение сезонного эффекта (в некоторых источниках применяется термин десезонализация уровней ряда ) используются в двух направлениях. Во-первых, воздействие сезонных колебаний следует устранять на этапе предварительной обработки исходных данных при изучении взаимосвязи нескольких временных рядов. Поэтому в российских и международных статистических сборниках часто публикуются данные, в которых устранено влияние сезонной компоненты (если это помесячная или поквартальная статистика), например показатели объемов производства в отдельных отраслях промышленности, уровня безработицы и т.д. Во-вторых, это анализ структуры одномерных временных рядов с целью прогнозирования уровней ряда в будущие моменты времени.  [c.250]

Рассмотрены краткая история возникновения эконометрики, ее задачи и методы. Излагаются условия и методы построения эконометриче-ских моделей по пространственным данным и временным радам. Описываются структурные модели, включая путевой анализ, а также автокорре-ляционная функция и методы выявления структуры временного ряда. При изучении взаимосвязей между временными рядами уделяется внимание теории коинтеграции, моделям с распределенным лагом (метод Койка) и моделям авторегрессии, включая VAR-модели.  [c.343]

Смотреть страницы где упоминается термин Изучение взаимосвязей по временным рядам

: [c.6]    [c.265]    [c.54]    [c.45]    [c.20]