Влияние отбора переменных на оценку уравнения регрессии. Один из подходов к оцениванию параметров уравнения регрессии при наличии мультиколлинеарности состоит в сокращении количества входящих в модель предсказывающих переменных путем отбора подмножества предсказывающих переменных, существенных для прогноза значений переменной у. Каким бы способом ни проводился отбор переменных, число обусловленности уменьшается с уменьшением числа регрессо-ров. Процедура отбора существенных переменных, рассматриваемая как процедура выбора модели, полезна и когда исходная матрица Х Х хорошо обусловлена. Но особенно она эффективна в условия мультиколлинеарности, когда объясняющие переменные сильно коррелированы. Так, если две какие-либо переменные сильно коррелированы с у и друг с другом, то час-То бывает достаточно включения в модель одной из них, а дополнительным вкладом от включения другой можно пренебречь. [c.280]
Влияние отбора переменных на оценку уравнения регрессии. Один из подходов к оцениванию параметров уравнения регрессии при наличии мультиколлинеарности состоит в сокращении количества входящих в модель предсказывающих переменных путем отбора подмножества предсказывающих переменных, существенных для прогноза значений переменной у. Каким бы способом ни проводился отбор переменных, число обусловленности уменьшается с уменьшением числа регрессо-ров. Процедура отбора существенных переменных, рассматриваемая как процедура выбора модели, полезна и когда исходная матрица Х Х хорошо обусловлена. Но особенно она эффективна в условия мультиколлинеарности, когда объясняющие переменные сильно коррелированы. Так, если две какие-либо переменные сильно коррелированы с у и друг с другом, то час-То бывает достаточно включения в модель одной из них, а дополнительным вкладом от включения другой можно пренебречь. [c.280]