Модели парной регрессии. Парная линейная регрессия. Методы оценки коэффициентов регрессии. Метод наименьших квадратов (МНК). Свойства оценок МНК. Оценка статистической значимости коэффициентов регрессии. Элементы корреляционного анализа. Измерители тесноты связи (коэффициенты ковариации, корреляции и детерминации). Оценка значимости коэффициента корреляции. Дисперсионный анализ результатов регрессии. Оценка статистической значимости уравнения регрессии. Анализ ряда остатков условия Гаусса-Маркова. Нелинейные модели регрессии и их линеаризация. Выбор функции регрессии тесты Бокса-Кокса. Корреляция в случае нелинейной регрессии. Средняя ошибка аппроксимации. [c.3]
Вычисление парных коэффициентов корреляции между исследуемыми факторами, построение уравнения регрессии, проверка его надежности по критериям Фишера и Стьюдента, исключение из исходной матрицы ненадежных факторов. [c.34]
Для этого отыскивались уравнения регрессии для линейной, гиперболической и параболической второго порядка форм связи(подробнее вопрос о форме связи изложен ниже). При этом использовались расчеты парных корреляционно-регрессионных зависимостей между суточной загрузкой оборудования и расходом в отдельности топлива, воды, электроэнергии и пара, приходящиеся на единицу целевой продукции. [c.99]
Анализ проведенных расчетов по Миннефтепрому показал, что основное влияние на величину удельного расхода оказывают затраты времени на работы по проводке скважин t, Р Так, коэффициент парной корреляции Z/yz 0, 983. Это свидетельствует с достоверностью 0, 99 о наличии между ними линейной связи. Влияние же остальных двух факторов для данного объема наблюдений оказалось несущественным. Это подтвердилось и полученными значениями функции Фишера, характеризующими влияние факторов. (Методика использования критерия Фишера изложена в статье ( 1 ) этого же сборника). Соответствующее уравнение регрессии для Миннефтепрома имеет следующий вид [c.50]
Выдача на печать результатов исследования и моделирования в виде таблиц статистических характеристик для всех исследуемых факторов парных коэффициентов корреляции и их критических значений коэффициентов регрессии, показателей их надежности, коэффициентов эластичности. [c.270]
Оператор 83. Подпрограмма формирования матрицы парных Коэффициентов корреляции для нахождения уравнения регрессии (IV.4) в случае объединенной совокупности (без учета типа буровой установки). [c.75]
Операторы 112—119. Формирование матриц парных коэф- фициентов корреляции для построения уравнения регрессии (оператор 116, см. рис. 8) и вычисления остаточной дисперсии ( оператор 117, см. рис. 9) раздельно для данных по каждому типу буровых установок. [c.75]
Зависимость результативного показателя от определяющих его факторов можно выразить уравнением парной и множественной регрессии. При прямолинейной форме они имеют следующий вид уравнение парной регрессии К.= а + Ьх [c.65]
Силу связи между вариациями себестоимости добычи нефти и газа п факторов определяют чистые (частные) коэффициенты корреляции. Они более соответствуют данной цели, чем парные коэффициенты корреляции, которые не свободны от корреляции с зависимой переменной прочих факторов, содержащихся в уравнении регрессии. Ввиду этого целесообразно остановиться на чистых коэффициентах корреляции. Наиболее сильно коррелируют с себестоимостью добычи нефти и газа (пятая строка, табл. 27) фондоемкость ( — 0,55), средний дебит ( — 0,49), время ( — 0,65), а наиболее слабо — удельная численность промышленно-производственного персонала (0,1). [c.92]
Эти сведения вводятся в ПЭВМ и рассчитываются матрицы парных и частных коэффициентов корреляции, уравнение множественной регрессии, а также показатели, с помощью которых оценивается надежность коэффициентов корреляции и уравнения связи критерий Стьюдента, критерий Фишера, средняя ошибка аппроксимации, множественные коэффициенты корреляции и детерминации. [c.145]
Матрица парных коэффициентов для нашего примера (табл.8.2) говорит об отсутствии коллинеарных (т.е. линейно связанных) факторов, что позволяет включить все эти факторы в уравнение регрессии. [c.331]
После проведения корреляционного анализа принимается решение о целесообразности построения уравнения регрессии, с помощью которого определяется аналитическое выражение формы связи между отдельными видами процентных ставок. С помощью регрессионного анализа выявляется изменение одной величины (результата) под влиянием одного или нескольких факторов, а множество прочих причин, оказывающих влияние на результат, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной). Подбор аналитических функций (линейных и криволинейных) для построения уравнения регрессии осуществляется аналогично подбору функций для уравнения тренда. На практике теоретическая форма связи определяется с использованием пакета статистических программ на ПЭВМ. Для наглядного изображения теоретической формы связи значения показателей, полученные с помощью уравнения регрессии, наносят на график и сравнивают их с эмпирическими данными. [c.624]
Формула (8.1) применяется при расчете показателя тесноты связи по аналитической группировке (см. гл. 6). При вычислении корреляционного отношения по уравнению связи (уравнению парной или множественной регрессии) применяется формула (8.2) [c.233]
Уравнение парной линейной корреляционной связи называется уравнением парной регрессии и имеет вид [c.238]
Формулы (8.10) соответствуют самому общему подходу к определению параметров уравнения регрессии и могут применяться в случае как парной, так и множественной регрессии. [c.240]
Коэффициент парной линейной регрессии, обозначенный Ь, имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у. Он измеряет среднее по совокупности отклонение от его средней величины при отклонении признаках от своей средней величины на принятую единицу измерения. [c.241]
Теснота парной линейной корреляционной связи, как и любой другой показатель, может быть измерена корреляционным отношением ц. Кроме того, при линейной форме уравнения применяется другой показатель тесноты связи - коэффициент корреляции г . Этот показатель представляет собой стандартизованный коэффициент регрессии, т. е. коэффициент, выраженный не в абсолютных единицах измерения признаков, а в долях среднего квадратического отклонения результативного признака [c.241]
Вероятностная оценка параметров корреляции производится по общим правилам проверки статистических гипотез, разработанным математической статистикой, в частности путем сравнения оцениваемой величины со средней случайной ошибкой оценки. Для коэффициента парной регрессии Ь средняя ошибка оценки вычисляется как [c.247]
ПРИМЕНЕНИЕ ПАРНОГО ЛИНЕЙНОГО УРАВНЕНИЯ РЕГРЕССИИ [c.250]
Прежде чем обсуждать вопросы использования уравнений парной регрессии, напомним, что парный корреляционный анализ не дает чистых мер влияния только одного изучаемого фактора. Если факторы взаимосвязаны, то парная связь измеряет влияние данного фактора и часть влияния прочих факторов, связанных с ним. И все же при тесной связи уравнение регрессии может стать полезным орудием анализа экономических, технологических, социальных или природных процессов. [c.250]
Таким образом, в отличие от коэффициента парной регрессии коэффициент условно-чистой регрессии измеряет влияние фактора, абстрагируясь от связи вариации этого фактора с вариацией остальных факторов. Если было бы возможным включить в уравнение регрессии все факторы, влияющие на вариацию результативного признака, то величины Ъ( можно было бы считать мерами чистого влияния факторов. Но так как реально невозможно включить все факторы в уравнение, то коэффициенты fy не свободны от примеси влияния факторов, не входящих в уравнение. [c.270]
Коэффициенты условно-чистой регрессии bf являются Именованными числами, выраженными в разных единицах измерения, и поэтому несравнимы друг с другом. Для преобразования их в сравнимые относительные показатели применяется то же преобразование, что и для получения коэффициента парной корреляции. Полученную величину называют стандартизованным коэффициентом регрессии или -коэффициентом. [c.270]
Рассмотрим соотношение между парным и условно-чистым коэффициентом регрессии на примере фактора лг,. Парное линейное уравнение связи у с xt имеет вид [c.274]
Условно-чистый коэффициент регрессии при х составляет только 58% парного. Остальные 42% связаны с тем, что вариации , сопутствует вариация факторов х2 х3, которая, в свою очередь, влияет на результативный признаку. Связи всех признаков и их коэффициенты парных регрессий представлены на графе связей (рис. 8.2). [c.274]
Если сложить оценки прямого и опосредованного влияния вариации , на у, т. е. произведения коэффициентов парных регрессий по всем путям (рис. 8.2), получим 2,26 + 12,55 0,166 + (-0,00128) (-4,31) + (-0,00128) 17,00 0,166 = 4,344. [c.274]
При и=2 уравнение (2.5) превращается в обычное уравнение парной регрессии, при л=3 это уравнение описывает плоскость, [c.58]
Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой, или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной). [c.113]
Парная регрессия характеризует связь между двумя признаками результативным и факторным. Аналитически связь между ними описывается уравнениями [c.115]
Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид [c.115]
По числу факторов различают простую (парную) и множественную (несколько факторов) регрессию. Вид и параметры уравнения регрессии устанавливаются с помощью метода наименьших квадратов отклонений эмпирических данных от ожидаемых значений. По типу уравнения регрессии различают линейную и нелинейную регрессию. [c.467]
Стандартное уравнение парной регрессии линейного вида ух = о + b x. [c.468]
Линейная парная регрессия [c.52]
В случае линейной парной регрессии т = 2, и уравнение регрессии значимо на уровне а, если [c.73]
Следует отметить, что значимость уравнения парной линейной регрессии может быть проведена и другим способом, если оценить значимость коэффициента регрессии Ь, который, как отмечено в 3.4, имеет /-распределение Стьюдента с k=n—2 степенями свободы. [c.73]
Уравнение парной линейной регрессии или коэффициент регрессии Ь значимы на уровне а (иначе — гипотеза Яо о равенстве параметра Pi нулю, т. е. Яо Pi=0, отвергается), если фактически наблюдаемое значение статистики (3.37) [c.73]
По таблицам /-распределения (табл. II приложений) /о,95 8=2,31. Так как / > )95 8. то коэффициент регрессии Ь, а значит, и уравнение парной линейной регрессии У по А" значимы. [c.74]
Теорема Гаусса— Маркова, рассмотренная выше для парной регрессионной модели, оказывается верной и в общем виде для модели (4.2) множественной регрессии [c.87]
Добавление в регрессионную модель новой объясняющей переменной АЗ изменило коэффициент регрессии Ь (У по Х ) с 1,016 для парной регрессии (см. пример 3.1) до 0,854 — для множественной регрессии. В этом никакого противоречия нет, так как во втором случае коэффициент регрессии позволяет оценить прирост зависимой переменной Y при изменении на единицу объясняющей переменной Х в чистом виде, независимо от Х . В случае парной регрессии Ъ учитывает воздействие на Y не только переменной Х, но и косвенно корреляционно связанной с ней переменной Х . [c.90]
Выше такой интервал получен для уравнения парной регрессии (см. (3.34) и (3.33)). Обобщая соответствующие выражения на случай множественной регрессии, можно получить доверительный интервал для M Y) [c.98]
Доверительный интервал для параметра о2 в множественной регрессии строится аналогично парной модели по формуле (3.39) с соответствующим изменением числа степеней свободы критерия х2 [c.99]
Необходимость применения многофакторного корреляционного анализа. Этапы многофакторного корреляционного анализа. Правила отбора факторов для корреляционной модели. Обоснование необходимого объема выборки данных для корреляционного анализа. Сбор и статистическая оценка исходной информации. Способы обоснования уравнения связи. Основные показатели связи в корреляционном анализе и их интерпретация. Сущность парных (общих), частных и множественных коэффициентов корреляции и детерминации. Оценка значимости коэффициентов корреляции. Порядок расчета уравнения множественной регрессии шаговым способом. Интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэф-фициентов. [c.138]
Ограничением прогнозирования на основании регрессионного уравнения, тем более парного, служит условие стабильности или по крайней мере малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится "внешняя среда" протекающего процесса, прежнее уравнение регрессии результативного признака на факторный потеряет свое значение. В сильно засушливый год доза удобрений может не оказать влияния на урожайность сельскохозяйственной культуры, так как последнюю лимитирует недостаточная влагообеспеченность. [c.251]
По этой матрице можно судить о тесноте связи факторов с результативным признаком и между собой. Хотя все эти показатели относятся к парным связям, все же матрицу можно использовать для предварительного отбора факторов для включения в уравнение регрессии. Не рекомендуется включать в уравнение факторы слабо связанные с результативными признаками, но тесно связанные с другими факторами. Если, например, имеем г =0,8 г = 0,65 г п = 0,88, то в регрессионное уравнение следует включить фактор х , а фактор х2 не включать, так как он тесно связан с х] (коллине-арен с я,), и его корреляция с у слабее, чем корреляция фактора , . Совершенно недопустимо включать в анализ факторы, функционально связанные друг с другом, т. е. с коэффициентом корреляции, равным единице. Включение таких пар признаков приводит к вырожденной матрице коэффициентов и неопределенности решения. В этом случае решение задачи на ПЭВМ прекращается. [c.275]
И в том и в другом периоде среднесменная добыча рабочего теснее коррелирует с мощностью пласта, нежели с уровнем механизации навалки угля. Однако наметилось некоторое снижение величины rvm при повышении гуи. Сравнение коэффициентов парной корреляции зависимой переменной (V) с независимыми переменными и корреляции последних между собой свидетельствует о ко-линеарности факторов - их тесной линейной связи. При таком соотношении нецелесообразно построение множественной регрессии, куда бы входили оба названных фактора - и мощность пласта и коэффициент механизированной навалки угля. Поэтому построим [c.416]
В учебнике излагаются основы эконометрики. Большое внимание уделяется классической (парной и множественной) и обобщенной моделям линейной регрессии, классическому и обобщенному методам наименьших квадратов, анализу временных рядов и систем одновременных уравнений. Обсуждаются различные аспекты многомерной регрессии мультиколлине-арность, фиктивные переменные, спецификация и линеаризация модели, частная корреляция. Учебный материал сопровождается достаточным числом решенных задач и задач для самостоятельной работы. [c.2]