Проверить значимость уравнения регрессии — значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. [c.70]
Проверка значимости уравнения регрессии производится на основе дисперсионного анализа. [c.70]
По данным табл. 3.1 оценить на уровне а=0,05 значимость уравнения регрессии У по X. [c.74]
По данным примера 3.7 а) найти уравнение регрессии Y по X б) найти коэффициент детерминации R2 и пояснить его смысл в) проверить значимость уравнения регрессии на 5%-ном уровне по F-критерию г) оценить среднюю производительность труда на предприятиях с уровнем механизации работ 60% и построить для нее 95%-ный доверительный интервал аналогичный доверительный интервал найти для индивидуальных значений производительности труда на тех же предприятиях. [c.81]
Зная / 2=0,811, проверим значимость уравнения регрессии. Фактическое значение критерия по (4.35) [c.106]
Постройте таблицу дисперсионного анализа для оценки значимости уравнения регрессии в целом. [c.35]
Сделайте вывод о значимости уравнения регрессии. [c.37]
Оцените значимость уравнений регрессии в целом и их параметров. Сравните полученные результаты, выберите лучшее уравнение регрессии. [c.48]
Общий F-критерий проверяет гипотезу Яо о статистической значимости уравнения регрессии и показателя тесноты связи (Л2 = 0) [c.59]
Оцените значимость уравнения регрессии в целом с помощью F-критерия Фишера. [c.86]
Найдите скорректированный коэффициент корреляции, оцените значимость уравнения регрессии в целом. [c.86]
Оцените значимость уравнения регрессии, учитывая, что оно построено по 30 наблюдениям. [c.87]
Оценка значимости уравнения регрессии обычно дается в виде таблицы дисперсионного анализа (табл. 2.2). [c.53]
Величина /"-критерия, оценивая значимость уравнения регрессии в целом, характеризует одновременно и значимость коэффициента (индекса) множественной корреляции. Вместе с тем оценку существенности коэффициента множественной корреляции можно дать и через сравнение скорректированного коэффициента корреляции с его табличным значением при соответствующем уровне вероятности и числе степеней свободы п — т — 1. Так, при п = 30 и т = 2 фактическое значение R должно превышать 0,368 при 5 %-ном уровне значимости, чтобы можно было считать его значение отличным от нуля с вероятностью 0,95. [c.139]
Модели парной регрессии. Парная линейная регрессия. Методы оценки коэффициентов регрессии. Метод наименьших квадратов (МНК). Свойства оценок МНК. Оценка статистической значимости коэффициентов регрессии. Элементы корреляционного анализа. Измерители тесноты связи (коэффициенты ковариации, корреляции и детерминации). Оценка значимости коэффициента корреляции. Дисперсионный анализ результатов регрессии. Оценка статистической значимости уравнения регрессии. Анализ ряда остатков условия Гаусса-Маркова. Нелинейные модели регрессии и их линеаризация. Выбор функции регрессии тесты Бокса-Кокса. Корреляция в случае нелинейной регрессии. Средняя ошибка аппроксимации. [c.3]
Пример. Проверить значимость уравнения регрессии [c.90]
Для проверки значимости уравнения регрессии необходимо при заданных значениях (хр х2) провести несколько экспериментов, чтобы для данного значения (, , х2) получить некоторое среднее значение функции у. В этом случае экспериментальный материал представляется, например, в виде табл. 3.19. [c.111]
Критерий Фишера F Математический критерий, характеризующий значимость уравнения регрессии. Применяется для выбора модели Больше табличного значения, установленного для различных размеров матрицы и вероятностей [c.322]
Для выявления существенности факторов х,- в уравнениях (20) — (22) были рассчитаны значения -критерия Стьюдента для всех коэффициентов уравнения регрессии, которые затем были сопоставлены с табличными значениями. Как видно из табл. 37, расчетные значения -критерия Стьюдента для всех коэффициентов полученных уравнений регрессий (20) — (22) выше табличных, что свидетельствует о их значимости. [c.86]
Отбор значимых факторов приведенных выше уравнений регрессии осуществлялся на основе применения критерия Фишера, а коэффициенты регрессии найдены с точностью, определяемой функцией Стьюдента (3). [c.54]
Выбор математической формы связи при моделировании себестоимости добычи нефти, как показывает практика, целесообразно проводить методом перебора известных уравнений регрессий с переходом от менее сложных форм к более сложным. Часто случается так, что одна часть факторов связана с себестоимостью добычи нефти линейной зависимостью, другая — нелинейной. Поэтому удобнее поиск искомой формы связи начинать с линейной зависимости, затем проверить нелинейную зависимость, а потом перейти к более сложным формам связи (приложение 1). При выборе формы связи необходимо стремиться к получению достаточно простой по решению и удобной для экономической интерпретации модели. Модель себестоимости добычи нефти должна также отвечать условиям адекватности при включении в нее возможно меньшего числа факторов. Последнее обстоятельство указывает на то, что оценка значимости факторов с последующим отсевом менее существенных из них не утрачивает своей актуальности и на этом этапе исследования. [c.18]
Далее следует оценить параметры уравнения регрессии на их значимость и показатели тесноты на их существенность. [c.329]
На основе F-критерия принимаются решения о форме уравнения регрессии, о статистической значимости той или иной объясняющей переменной при построении многофакторного уравнения регрессии (см. гл. 8) и др. [c.217]
После построения уравнения регрессии необходимо сделать проверку его значимости с помощью специальных критериев установить, не является ли полученная зависимость, выраженная уравнением регрессии, случайной, т.е. можно ли ее использовать в прогнозных целях и для факторного анализа. В статистике разработаны методики строгой проверки значимости коэффициентов регрессии с помощью дисперсионного анализа и расчета специальных критериев (например, F-критерия). Нестрогая проверка может быть выполнена путем расчета среднего относительного линейного отклонения (ё), называемого средней ошибкой аппроксимации [c.123]
Коэффициенты регрессии в (4.14) несопоставимы между собой, а / -коэффициенты уже сопоставимы. Поэтому для аналитика именно стандартизованное представление уравнения регрессии имеет особую значимость, поскольку позволяет дать сравнительную характеристику значимости факторов чем больше значение / -коэффициента, тем более существен фактор с позиции влияния его на результативный показатель. Бета-коэффициенты могут использоваться для установления нормативов, разработки весовых коэффициентов при конструировании различных сложных аналитических показателей (например, уровень научно-технического прогресса). [c.125]
В определенных обстоятельствах можно использовать коэффициент ранговой корреляции в качестве альтернативного показателя оценки зависимости между двумя наборами значений. Так, часто трудно получить точные показатели некоторых значений, и поэтому единственный надежный метод состоит в расстановке переменных по порядку, иначе говоря — в ранжировании значений. Коэффициент корреляции ранжированных значений называется коэффициентом ранговой корреляции, и он вычисляется по упрощенной формуле, которая приведена в этой главе. Значимая корреляция между двумя переменными подразумевает наличие линейной зависимости между ними. Методы регрессии можно использовать для определения уравнения наилучшей прямой линии, линии регрессии. Уравнение регрессии записывается в виде у = а + Ьх. Это уравнение можно использовать для оценки значения у при заданном значении х. Так, например, объем выручки от реализации можно рассчитать исходя из заданной суммы расходов на рекламу. Нелинейная зависимость между переменными должна быть преобразована в линейную, и только потом следует проводить базовый анализ регрессии. [c.128]
Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена с помощью эвристических или многомерных статистических методов анализа. Наиболее приемлемым методом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность данного метода заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости. Факторы поочередно вводятся в уравнение так называемым прямым методом . При проверке значимости введенного фактора определяется, насколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции (R). Одновременно используется и обратный метод, т.е. исключение факторов, ставших незначимыми на основе -крите-рия Стьюдента. Фактор является незначимым, если его включение в уравнение регрессии только изменяет значение коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. Если при включении в модель соответствующего факторного признака величина множественного коэффициента корреляции увеличивается, а коэффициент регрессии не изменяется (или меняется несущественно), то данный признак существен и его включение в уравнение регрессии необходимо. [c.118]
Проверка адекватности моделей, построенных на основе уравнений регрессии, начинается с проверки значимости каждого коэффициента регрессии с помощью Г-критерия Стьюдента [c.120]
Блок 7—проверка значимости уравнения регрессии. Критерием оценки уравнения регрессии выбран коэффициент множественной корреляции, оценка значимости которого проводится с использованием модуля Mill. [c.53]
Оцените статистическую значимость уравнения регрессии и его параметров с помощью критериеэ Фишера и Стьюдента. [c.97]
Оценка значимости уравнения регрессии в целом дается с помощью /-"-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, т. е. b = 0, и, следовательно, факторх не оказывает влияния на результату. [c.48]
Поскольку кт > Рта6л как при 1%-ном, так и при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана). [c.52]
Оцените статистическую значимость уравнений регрессии и их параметров при помощи F-критерия Фишера-Снедекора, частных F-критериев и t-критерия Стьюдента. [c.10]
Определение взаимосвязи вида У/ / связано как с проведением большого количества вычислительных операций, так и с рпределением большого количества статистических парамет— ров позволяющих производить анализ и отбор наиболее значимых факторов и уравнений регрессии. Поэтому расчеты целесообразно проводить на ЭВМ. [c.22]
После всесторонней и детальной оценки значимости факторов необходимо перейти к выбору формы связи, т. е. требуется подобрать такое уравнение регрессии, которое будет служить аналогом и более полно отражать экономическую сущнрсть исследуемого явления. Первой в поиске искомой модели участвует простая форма линейной связи. Решение этого уравнения на ЭВМ приводит к виду [c.29]
Такого рода характеристика явлений, влияющих на уровень и динамику валютного курса, является непременным этапом, предшествующим самостоятельному статистическому анализу факторов на основе конкретного цифрового материала. Дальнейший анализ выглядит чаще как моделирование взаимосвязей и оценка тесноты взаимозависимости (корреляционно-регрессионный анализ). Напомним, что выбор функции осуществляется исходя из показателей значимости уравнения и ошибок аппроксимации. Это относительная ошибка аппроксимации, средняя квадратическая ошибка аппроксимации (6ОСТ) (чем они меньше, тем лучше уравнение) и коэффициент множественной детерминации (R2) или коэффициент множественной корреляции (R) (чем ближе он к 1, тем более вероятность, что уравнение регрессии носит совершенно случайный характер). Для проверки значимости используют F-критерий с распределением Фишера. [c.670]
Увеличение абсолютной величины - свободного члена уравнения регрессии параметра а - является следствием снижения тесноты прямолинейной связи между мощностью пласта и среднесменной добычей угля на одного подземного рабочего. Данные табл. 10.15 позволяют определить значимость изменения мощности пласта и [c.421]