Свободные члены уравнения

Оператор 10. Вычисление свободного члена уравнения регрессии а0.  [c.78]

Свободный член уравнения -240,113  [c.330]

По уравнению (8.6) обычно на практике вычисляется свободный член уравнения регрессии а. Параметр Ь вычисляется по преобразованной формуле, которую можно вывести, решая систему нормальных уравнений относительно Ь  [c.239]


Свободный член уравнения регрессии вычислим по формуле (8.6)  [c.245]

Отрицательная величина свободного члена уравнения означает, что область существования признака у не включает нулевого значения признака j и близких значений. Можно рассчитать минимально возможную величину фактора х, при которой обеспечивается наименьшее значение признака у (разумеется, положительное).  [c.245]

Это означает, что в среднем с увеличением возраста женихов на 1 год возраст их невест возрастал на 0,83 года. Свободный член уравнения согласно (8.6)  [c.258]

Решая эту систему, получаем значения коэффициентов условно-чистой регрессии bf. Свободный член уравнения вычисляется по формуле  [c.269]

Для увязки этих частных индексов следует ввести корректирующий индекс, отражающий изменение свободного члена уравнения регрессии v по М  [c.419]

Рассмотренный пример показывает, что подобный анализ основан на определенной условности. Так, оценку влияния изменения коэффициента регрессии мы проводим при базисном значении свободного члена уравнения, тогда как параметры уравнения регрессии связаны друг с другом. Все они получаются в результате решения одной и той же системы уравнений. То же можно сказать в отношении раздельной оценки изменения значения фактора и силы  [c.419]


Чтобы обеспечить это равенство, нужно принять какое-то правило индексации. Например, в соответствии с уже высказанным положением сначала индексируются все х/ При постоянных (базисных) значениях коэффициентов регрессии и свободного члена, затем индексируются коэффициенты регрессии при постоянных (отчетных) средних значениях Зс , затем индексируется свободный член уравнения регрессии при постоянных (отчетных) значениях как д ., так и bj.  [c.423]

Коэффициент переменной может использоваться в уравнении регрессии, если вычисленная для него величина (1 - Р-значение) близка к 1. Параметр Выпуск продукции и Y-пересечение (свободный член уравнения регрессии) не являются значимыми. Поэтому модельное уравнение регрессии  [c.471]

Рассматриваемые выше регрессионные модели (5.2) и (5.3) отражали влияние качественного признака (фиктивных переменных) только на значения переменной Y, т. е. на свободный член уравнения регрессии. В более сложных моделях может быть отражена также зависимость фиктивных переменных на сами параметры при переменных регрессионной модели. Например, при наличии в модели объясняющих переменных — количественной Х и фиктивных Z , Z 2, Zi, Z>2, из которых Z , Z 2 влияют только на значение коэффициента при Х, a Z2i, Z- — только на величину свободного члена уравнения, такая регрессионная модель примет вид  [c.118]

Модели типа (5.4) используются, например, при исследовании зависимости объема потребления Y некоторого продукта от дохода потребителя X, когда одни качественные признаки (например, фактор сезонности) влияют лишь на количество потребляемого продукта (свободный член уравнения регрессии), а другие (например, уровень доходности домашнего хозяйства) — на параметр Pi при X, интерпретируемый как склонность к потреблению .  [c.119]


В матрице-столбце X единица означает фиктивную переменную, умножаемую на свободные члены уравнений системы.  [c.226]

Динамика доли накопления (в %) за эти годы, естественно, получится из приведенных выше уравнений потребления с заменой знаков коэффициентов при переменной на противоположный, а свободный член нового уравнения будет равен дополнению до 100 свободного членя уравнения доли потребления. Однако коэффициент вариации доли накопления, естественно, будет значительно больше, так как при той же сигме средняя доля накопления за весь период будет меньше примерно в 3 раза.  [c.146]

Значение свободного члена уравнения регрессии в натуральном масштабе находим из уравнения  [c.181]

Свободный член уравнения равен отрезку, отсекаемому нормативной линией на оси ординат (в нашем примере — 0,13).  [c.211]

Для лиц мужского пола, когда i = 1 и z2 - 0, объединенное уравнение регрессии составит у = а, + b х, а для лиц женского пола, когда г, = 0 и z% = 1, у — вг + "х- Иными словами, различия в потреблении для лиц мужского и женского пола вызваны различиями свободных членов уравнения регрессии ах а2. Параметр b является общим для всей совокупности лиц, как для мужчин, так и для женщин.  [c.142]

А - свободный член уравнения  [c.192]

Эту же систему можно записать, включив в нее свободный член уравнения, т. е. перейти от переменных в виде отклонений от среднего уровня к исходным переменным у их.  [c.198]

Свободные члены уравнений определим по формулам  [c.198]

Таким образом, фиктивные переменные позволяют дифференцировать величину свободного члена уравнения регрессии для каждого квартала. Она составит  [c.253]

Свободный член уравнения а0= — 3,085 экономически не интерпретируется, он определяет положение начальной точки линии регрессии в системе координат.  [c.41]

Свободные члены уравнения 174 Свободный ресурс 317 Свободный товар 317 Сводный материально-финансовый  [c.487]

Свободный член уравнения, построенного на главных компонентах, характеризует среднее значение прибыли в анализируемой совокупности. В силу этого решение уравнения регрессии, построенного на главных компонентах, позволяет определить величину прибыли только за счет выделения главных компонент. Наличие в уравнении значения прибыли дает возможность проводить сравнительный анализ работы предприятия за несколько лет, установить динамику его рентабельности.  [c.152]

Так как вариация зависимой переменной превосходит вариацию независимой переменной (vv, > VM), свободный член уравнения регрессии в обоих периодах - отрицательная величина (а < 0). Сравнение коэффициентов регрессии Ь0 и Ь показывает, что сила влияния данного фактора на среднесменную добычу рабочего растет, а теснота связи падает (г м < "VftM0)- Если коэффициент детерминации в базисном периоде составил г2,, м = 81,54%, то в отчетном -rV, = 79,74%.  [c.417]

Увеличение абсолютной величины - свободного члена уравнения регрессии параметра а - является следствием снижения тесноты прямолинейной связи между мощностью пласта и среднесменной добычей угля на одного подземного рабочего. Данные табл. 10.15 позволяют определить значимость изменения мощности пласта и  [c.421]

Измерим, как изменилась среднесменная добыча рабочего и как на нее повлияло изменение средней мощности пласта (х), силы влияния этого фактора на добычу (Ь) и корректирующего параметра, т. е. свободного члена уравнения регрессии (а)  [c.423]

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности1  [c.110]

Параметр Ь есть разница между свободными членами уравнений (1) и (2), а параметр d — разница между параметрами Ь и Ь2 уравнений (1) и (2). Оценка статистической значимости различий а, и аь а также b vib2 эквивалентна оценке статистической значимости параметров b и d уравнения (5.24). Эту оценку можно провести при помощи /-критерия Стьюдента.  [c.261]

Величину этого произведения приплюсовать к свободному члену уравнения, полученного из целевой функции, сумму округлить до ближайшего целого числа и повторять заново цикл до тех пор, пока не получится цельночисленное решение.  [c.149]

Робинзон может достичь максимума покупательских возможностей, если объемы производства продуктов соответствуют той точке границы производственных возможностей, где MRTxy = 1/5. Но такой точки на границе нет. На отрезке -AjA2 норма трансформации 6/36 < 0.2, на отрезке А2А3 она равна 9/24 > 0.2, на последующих отрезках — еще больше. В точке А2 норма трансформации перескакивает через значение 0.2, так что точка А2 с координатами х = 36, у = 63 (это объемы производства продуктов Робинзоном) лежит на бюджетной линии. Отсюда определяется свободный член уравнения бюджетной линии 63 = а - 36/5, откуда а = 70.2, и бюджетная линия описывается уравнением у = 70.2 - 0.2 . Решая это уравнение совместно с уравнением у = х/3 (см. решение задачи 1), находим объемы потребления х = 131.625, у - 43.875.  [c.706]

Экономико-математический словарь Изд.5 (2003) -- [ c.174 ]